Biblio
Network steganography is a branch of steganography that hides information through packet header manipulation and uses protocols as carriers to hide secret information. Many techniques were already developed using the Transmission Control Protocol (TCP) headers. Among the schemes in hiding information in the TCP header, the Initial Sequence Number (ISN) field is the most difficult to be detected since this field can have arbitrary values within the requirements of the standard. In this paper, a more undetectable scheme is proposed by increasing the complexity of hiding data in the TCP ISN using dynamic identifiers. The experimental results have shown that using Bayes Net, the proposed scheme outperforms the existing scheme with a low detection accuracy of 0.52%.
This paper attempts to introduce the enhanced SHA-1 algorithm which features a simple quadratic function that will control the selection of primitive function and constant used per round of SHA-1. The message digest for this enhancement is designed for 512 hashed value that will answer the possible occurrence of hash collisions. Moreover, this features the architecture of 8 registers of A, B, C, D, E, F, G, and H which consists of 64 bits out of the total 512 bits. The testing of frequency for Q15 and Q0 will prove that the selection of primitive function and the constant used are not equally distributed. Implementation of extended bits for hash message will provide additional resources for dictionary attacks and the extension of its hash outputs will provide an extended time for providing a permutation of 512 hash bits.
The integration of subset sum in the verifiable secret sharing scheme provides added security measure for a multiparty computation such as immediate identification of and removal of an imposter, avoidance or discourages man-in-the-middle attack and lattice-based attack, and lessens dealer's burden on processing monitoring the integrity of shareholders. This study focuses on the security assessment of a brute-force attack on the subset sum-based verifiable secret sharing scheme. With the simulation done using a generator of all possible fixed-length partition (which is k=3 as the least possible) summing up to the sum of the original subset generated by the dealer, it shows that it will already took 11,408 years to brute-force all possible values even on a small 32-bit-length value and 3.8455 years for a 128-bit length value thus proving that the resiliency on brute attack on the subset sum based VSSS can be discounted despite simplicity of the implementation. Zero knowledge on the number of threshold will also multiply to the impossibility of the brute force attack.
The power of artificial neural networks to form predictive models for phenomenon that exhibit non-linear relationships is a given fact. Despite this advantage, artificial neural networks are known to suffer drawbacks such as long training times and computational intensity. The researchers propose a two-tiered approach to enhance the learning performance of artificial neural networks for phenomenon with time series where data exhibits predictable changes that occur every calendar year. This paper focuses on the initial results of the first phase of the proposed algorithm which incorporates clustering and classification prior to application of the backpropagation algorithm. The 2016–2017 zonal load data of France is used as the data set. K-means is chosen as the clustering algorithm and a comparison is made between Naïve Bayes and k-Nearest Neighbors to determine the better classifier for this data set. The initial results show that electrical load behavior is not necessarily reflective of calendar clustering even without using the min-max temperature recorded during the inclusive months. Simulating the day-type classification process using one cluster, initial results show that the k-nearest neighbors outperforms the Naïve Bayes classifier for this data set and that the best feature to be used for classification into day type is the daily min-max load. These classified load data is expected to reduce training time and improve the overall performance of short-term load demand predictive models in a future paper.