Biblio

Filters: Author is Yu, Nenghai  [Clear All Filters]
2023-06-16
Yue, Zhengyu, Yao, Yuanzhi, Li, Weihai, Yu, Nenghai.  2022.  ATDD: Fine-Grained Assured Time-Sensitive Data Deletion Scheme in Cloud Storage. ICC 2022 - IEEE International Conference on Communications. :3448—3453.
With the rapid development of general cloud services, more and more individuals or collectives use cloud platforms to store data. Assured data deletion deserves investigation in cloud storage. In time-sensitive data storage scenarios, it is necessary for cloud platforms to automatically destroy data after the data owner-specified expiration time. Therefore, assured time-sensitive data deletion should be sought. In this paper, a fine-grained assured time-sensitive data deletion (ATDD) scheme in cloud storage is proposed by embedding the time trapdoor in Ciphertext-Policy Attribute-Based Encryption (CP-ABE). Time-sensitive data is self-destructed after the data owner-specified expiration time so that the authorized users cannot get access to the related data. In addition, a credential is returned to the data owner for data deletion verification. This proposed scheme provides solutions for fine-grained access control and verifiable data self-destruction. Detailed security and performance analysis demonstrate the security and the practicability of the proposed scheme.
2023-02-03
Feng, Jinliu, Wang, Yaofei, Chen, Kejiang, Zhang, Weiming, Yu, Nenghai.  2022.  An Effective Steganalysis for Robust Steganography with Repetitive JPEG Compression. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3084–3088.
With the development of social networks, traditional covert communication requires more consideration of lossy processes of Social Network Platforms (SNPs), which is called robust steganography. Since JPEG compression is a universal processing of SNPs, a method using repeated JPEG compression to fit transport channel matching is recently proposed and shows strong compression-resist performance. However, the repeated JPEG compression will inevitably introduce other artifacts into the stego image. Using only traditional steganalysis methods does not work well towards such robust steganography under low payload. In this paper, we propose a simple and effective method to detect the mentioned steganography by chasing both steganographic perturbations as well as continuous compression artifacts. We introduce compression-forensic features as a complement to steganalysis features, and then use the ensemble classifier for detection. Experiments demonstrate that this method owns a similar and better performance with respect to both traditional and neural-network-based steganalysis.
ISSN: 2379-190X
2019-02-08
Zhang, Yiwei, Zhang, Weiming, Chen, Kejiang, Liu, Jiayang, Liu, Yujia, Yu, Nenghai.  2018.  Adversarial Examples Against Deep Neural Network Based Steganalysis. Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. :67-72.

Deep neural network based steganalysis has developed rapidly in recent years, which poses a challenge to the security of steganography. However, there is no steganography method that can effectively resist the neural networks for steganalysis at present. In this paper, we propose a new strategy that constructs enhanced covers against neural networks with the technique of adversarial examples. The enhanced covers and their corresponding stegos are most likely to be judged as covers by the networks. Besides, we use both deep neural network based steganalysis and high-dimensional feature classifiers to evaluate the performance of steganography and propose a new comprehensive security criterion. We also make a tradeoff between the two analysis systems and improve the comprehensive security. The effectiveness of the proposed scheme is verified with the evidence obtained from the experiments on the BOSSbase using the steganography algorithm of WOW and popular steganalyzers with rich models and three state-of-the-art neural networks.