Biblio

Filters: Author is Hu, C.  [Clear All Filters]
2020-12-07
Xia, H., Xiao, F., Zhang, S., Hu, C., Cheng, X..  2019.  Trustworthiness Inference Framework in the Social Internet of Things: A Context-Aware Approach. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :838–846.
The concept of social networking is integrated into Internet of things (IoT) to socialize smart objects by mimicking human behaviors, leading to a new paradigm of Social Internet of Things (SIoT). A crucial problem that needs to be solved is how to establish reliable relationships autonomously among objects, i.e., building trust. This paper focuses on exploring an efficient context-aware trustworthiness inference framework to address this issue. Based on the sociological and psychological principles of trust generation between human beings, the proposed framework divides trust into two types: familiarity trust and similarity trust. The familiarity trust can be calculated by direct trust and recommendation trust, while the similarity trust can be calculated based on external similarity trust and internal similarity trust. We subsequently present concrete methods for the calculation of different trust elements. In particular, we design a kernel-based nonlinear multivariate grey prediction model to predict the direct trust of a specific object, which acts as the core module of the entire framework. Besides, considering the fuzziness and uncertainty in the concept of trust, we introduce the fuzzy logic method to synthesize these trust elements. The experimental results verify the validity of the core module and the resistance to attacks of this framework.
2019-02-08
Xie, H., Lv, K., Hu, C..  2018.  An Improved Monte Carlo Graph Search Algorithm for Optimal Attack Path Analysis. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :307-315.

The problem of optimal attack path analysis is one of the hotspots in network security. Many methods are available to calculate an optimal attack path, such as Q-learning algorithm, heuristic algorithms, etc. But most of them have shortcomings. Some methods can lead to the problem of path loss, and some methods render the result un-comprehensive. This article proposes an improved Monte Carlo Graph Search algorithm (IMCGS) to calculate optimal attack paths in target network. IMCGS can avoid the problem of path loss and get comprehensive results quickly. IMCGS is divided into two steps: selection and backpropagation, which is used to calculate optimal attack paths. A weight vector containing priority, host connection number, CVSS value is proposed for every host in an attack path. This vector is used to calculate the evaluation value, the total CVSS value and the average CVSS value of a path in the target network. Result for a sample test network is presented to demonstrate the capabilities of the proposed algorithm to generate optimal attack paths in one single run. The results obtained by IMCGS show good performance and are compared with Ant Colony Optimization Algorithm (ACO) and k-zero attack graph.