Biblio

Filters: Author is Tafazolli, Rahim  [Clear All Filters]
2022-07-01
Soltani, Sanaz, Shojafar, Mohammad, Mostafaei, Habib, Pooranian, Zahra, Tafazolli, Rahim.  2021.  Link Latency Attack in Software-Defined Networks. 2021 17th International Conference on Network and Service Management (CNSM). :187–193.
Software-Defined Networking (SDN) has found applications in different domains, including wired- and wireless networks. The SDN controller has a global view of the network topology, which is vulnerable to topology poisoning attacks, e.g., link fabrication and host-location hijacking. The adversaries can leverage these attacks to monitor the flows or drop them. However, current defence systems such as TopoGuard and TopoGuard+ can detect such attacks. In this paper, we introduce the Link Latency Attack (LLA) that can successfully bypass the systems' defence mechanisms above. In LLA, the adversary can add a fake link into the network and corrupt the controller's view from the network topology. This can be accomplished by compromising the end hosts without the need to attack the SDN-enabled switches. We develop a Machine Learning-based Link Guard (MLLG) system to provide the required defence for LLA. We test the performance of our system using an emulated network on Mininet, and the obtained results show an accuracy of 98.22% in detecting the attack. Interestingly, MLLG improves 16% the accuracy of TopoGuard+.
2015-05-05
Mohamed, Abdelrahim, Onireti, Oluwakayode, Qi, Yinan, Imran, Ali, Imran, Muhammed, Tafazolli, Rahim.  2014.  Physical Layer Frame in Signalling-Data Separation Architecture: Overhead and Performance Evaluation. European Wireless 2014; 20th European Wireless Conference; Proceedings of. :1-6.

Conventional cellular systems are dimensioned according to a worst case scenario, and they are designed to ensure ubiquitous coverage with an always-present wireless channel irrespective of the spatial and temporal demand of service. A more energy conscious approach will require an adaptive system with a minimum amount of overhead that is available at all locations and all times but becomes functional only when needed. This approach suggests a new clean slate system architecture with a logical separation between the ability to establish availability of the network and the ability to provide functionality or service. Focusing on the physical layer frame of such an architecture, this paper discusses and formulates the overhead reduction that can be achieved in next generation cellular systems as compared with the Long Term Evolution (LTE). Considering channel estimation as a performance metric whilst conforming to time and frequency constraints of pilots spacing, we show that the overhead gain does not come at the expense of performance degradation.