Biblio

Filters: Author is Khan, Latifur  [Clear All Filters]
2019-03-06
Khan, Latifur.  2018.  Big IoT Data Stream Analytics with Issues in Privacy and Security. Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics. :22-22.
Internet of Things (IoT) Devices are monitoring and controlling systems that interact with the physical world by collecting, processing and transmitting data using the internet. IoT devices include home automation systems, smart grid, transportation systems, medical devices, building controls, manufacturing and industrial control systems. With the increase in deployment of IoT devices, there will be a corresponding increase in the amount of data generated by these devices, therefore, resulting in the need of large scale data processing systems to process and extract information for efficient and impactful decision making that will improve quality of living.
2019-08-12
Karande, Vishal, Chandra, Swarup, Lin, Zhiqiang, Caballero, Juan, Khan, Latifur, Hamlen, Kevin.  2018.  BCD: Decomposing Binary Code Into Components Using Graph-Based Clustering. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :393-398.

Complex software is built by composing components implementing largely independent blocks of functionality. However, once the sources are compiled into an executable, that modularity is lost. This is unfortunate for code recipients, for whom knowing the components has many potential benefits, such as improved program understanding for reverse-engineering, identifying shared code across different programs, binary code reuse, and authorship attribution. A novel approach for decomposing such source-free program executables into components is here proposed. Given an executable, the approach first statically builds a decomposition graph, where nodes are functions and edges capture three types of relationships: code locality, data references, and function calls. It then applies a graph-theoretic approach to partition the functions into disjoint components. A prototype implementation, BCD, demonstrates the approach's efficacy: Evaluation of BCD with 25 C++ binary programs to recover the methods belonging to each class achieves high precision and recall scores for these tested programs.