Biblio
Blockchain networks have been claimed to have the potential of fundamentally changing the way humans perform economic transactions with each other. In such networks, trust-enabling agents and activities, that were traditionally arranged in a centralized fashion, are replaced by a network of nodes which collectively yet independently witness and establish the non-repudiability of transactions. Most often, a proof-of-work (PoW) requirement ensures that participants invest resources for joining the network, incentivizing conformance to the network rules, while making it highly infeasible for malicious agents to construct an alternative version of the transaction history. While research on security and efficiency aspects of blockchain networks is already being conducted, there is still work to be done to understand how different external and internal conditions guarantee or threaten their sustainability, i.e., their continuous operation. Focusing on public PoW-based blockchain platforms, in this paper we sketch an abstract model that is aimed at supporting comprehension and qualitative reasoning about the factors that affect sustainability of a blockchain network.