Biblio
Filters: Author is Husák, Martin [Clear All Filters]
Assessing Internet-Wide Cyber Situational Awareness of Critical Sectors. Proceedings of the 13th International Conference on Availability, Reliability and Security. :29:1-29:6.
.
2018. In this short paper, we take a first step towards empirically assessing Internet-wide malicious activities generated from and targeted towards Internet-scale business sectors (i.e., financial, health, education, etc.) and critical infrastructure (i.e., utilities, manufacturing, government, etc.). Facilitated by an innovative and a collaborative large-scale effort, we have conducted discussions with numerous Internet entities to obtain rare and private information related to allocated IP blocks pertaining to the aforementioned sectors and critical infrastructure. To this end, we employ such information to attribute Internet-scale maliciousness to such sectors and realms, in an attempt to provide an in-depth analysis of the global cyber situational posture. We draw upon close to 16.8 TB of darknet data to infer probing activities (typically generated by malicious/infected hosts) and DDoS backscatter, from which we distill IP addresses of victims. By executing week-long measurements, we observed an alarming number of more than 11,000 probing machines and 300 DDoS attack victims hosted by critical sectors. We also generate rare insights related to the maliciousness of various business sectors, including financial, which typically do not report their hosted and targeted illicit activities for reputation-preservation purposes. While we treat the obtained results with strict confidence due to obvious sensitivity reasons, we postulate that such generated cyber threat intelligence could be shared with sector/critical infrastructure operators, backbone networks and Internet service providers to contribute to the overall threat remediation objective.
Rapid prototyping of flow-based detection methods using complex event processing. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1—3.
.
2018. Detection of network attacks is the first step to network security. Many different methods for attack detection were proposed in the past. However, descriptions of these methods are often not complete and it is difficult to verify that the actual implementation matches the description. In this demo paper, we propose to use Complex Event Processing (CEP) for developing detection methods based on network flows. By writing the detection methods in an Event Processing Language (EPL), we can address the above-mentioned problems. The SQL-like syntax of most EPLs is easily readable so the detection method is self-documented. Moreover, it is directly executable in the CEP system, which eliminates inconsistencies between documentation and implementation. The demo will show a running example of a multi-stage HTTP brute force attack detection using Esper and its EPL.