Biblio

Filters: Author is Pope, Aaron Scott  [Clear All Filters]
2019-04-29
Harris, Sean, Michalak, Eric, Schoonover, Kevin, Gausmann, Adam, Reinbolt, Hannah, Herman, Joshua, Tauritz, Daniel, Rawlings, Chris, Pope, Aaron Scott.  2018.  Evolution of Network Enumeration Strategies in Emulated Computer Networks. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :1640–1647.
Successful attacks on computer networks today do not often owe their victory to directly overcoming strong security measures set up by the defender. Rather, most attacks succeed because the number of possible vulnerabilities are too large for humans to fully protect without making a mistake. Regardless of the security elsewhere, a skilled attacker can exploit a single vulnerability in a defensive system and negate the benefits of those security measures. This paper presents an evolutionary framework for evolving attacker agents in a real, emulated network environment using genetic programming, as a foundation for coevolutionary systems which can automatically discover and mitigate network security flaws. We examine network enumeration, an initial network reconnaissance step, through our framework and present results demonstrating its success, indicating a broader applicability to further cyber-security tasks.
2019-07-01
Pope, Aaron Scott, Morning, Robert, Tauritz, Daniel R., Kent, Alexander D..  2018.  Automated Design of Network Security Metrics. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :1680–1687.

Many abstract security measurements are based on characteristics of a graph that represents the network. These are typically simple and quick to compute but are often of little practical use in making real-world predictions. Practical network security is often measured using simulation or real-world exercises. These approaches better represent realistic outcomes but can be costly and time-consuming. This work aims to combine the strengths of these two approaches, developing efficient heuristics that accurately predict attack success. Hyper-heuristic machine learning techniques, trained on network attack simulation training data, are used to produce novel graph-based security metrics. These low-cost metrics serve as an approximation for simulation when measuring network security in real time. The approach is tested and verified using a simulation based on activity from an actual large enterprise network. The results demonstrate the potential of using hyper-heuristic techniques to rapidly evolve and react to emerging cybersecurity threats.