Biblio

Filters: Author is Zheng, Yang  [Clear All Filters]
2021-06-01
Zheng, Yang, Chunlin, Yin, Zhengyun, Fang, Na, Zhao.  2020.  Trust Chain Model and Credibility Analysis in Software Systems. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :153–156.
The credibility of software systems is an important indicator in measuring the performance of software systems. Effective analysis of the credibility of systems is a controversial topic in the research of trusted software. In this paper, the trusted boot and integrity metrics of a software system are analyzed. The different trust chain models, chain and star, are obtained by using different methods for credibility detection of functional modules in the system operation. Finally, based on the operation of the system, trust and failure relation graphs are established to analyze and measure the credibility of the system.
2019-05-08
Zhang, Dongxue, Zheng, Yang, Wen, Yu, Xu, Yujue, Wang, Jingchuo, Yu, Yang, Meng, Dan.  2018.  Role-based Log Analysis Applying Deep Learning for Insider Threat Detection. Proceedings of the 1st Workshop on Security-Oriented Designs of Computer Architectures and Processors. :18–20.
Insider threats have shown their great destructive power in information security and financial stability and have received widespread attention from governments and organizations. Traditional intrusion detection systems fail to be effective in insider attacks due to the lack of extensive knowledge for insider behavior patterns. Instead, a more sophisticated method is required to have a deeper understanding for activities that insiders communicate with the information system. In this paper, we design a classifier, a neural network model utilizing Long Short Term Memory (LSTM) to model user log as a natural language sequence and achieve role-based classification. LSTM Model can learn behavior patterns of different users by automatically extracting feature and detect anomalies when log patterns deviate from the trained model. To illustrate the effective of classification model, we design two experiments based on cmu dataset. Experimental evaluations have shown that our model can successfully distinguish different behavior pattern and detect malicious behavior.