Biblio

Filters: Author is Lung, C.  [Clear All Filters]
2019-09-09
Macwan, S., Lung, C..  2019.  Investigation of Moving Target Defense Technique to Prevent Poisoning Attacks in SDN. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:178–183.
The motivation behind Software-Defined Networking (SDN) is to allow services and network capabilities to be managed through a central control point. Moving Target Defense (MTD) introduces a constantly changing environment in order to delay or prevent attacks on a system. For the effective use of MTD, SDN can be used to help confuse the attacker from gathering legitimate information about the network. This paper investigates how SDN can be used for some network based MTD techniques and evaluate the benefits of integrating techniques in SDN and MTD. In the experiment, network assets are kept hidden from inside and outside attackers. Furthermore, the SDN controller is programed to perform IP mutation to keep changing real IP addresses of the underlying hosts by assigning each host a virtual IP address at a configured mutation rate to prevent attackers from stealing the real IP addresses or using fake IP addresses. The paper demonstrates experimental evaluation of the MTD technique using the Ryu controller and mininet. The results show that the MTD technique can be easily integrated into the SDN environment to use virtual IP addresses for hosts to reduce the chance of poisoning attacks.
2019-06-17
Shif, L., Wang, F., Lung, C..  2018.  Improvement of security and scalability for IoT network using SD-VPN. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–5.

The growing interest in the smart device/home/city has resulted in increasing popularity of Internet of Things (IoT) deployment. However, due to the open and heterogeneous nature of IoT networks, there are various challenges to deploy an IoT network, among which security and scalability are the top two to be addressed. To improve the security and scalability for IoT networks, we propose a Software-Defined Virtual Private Network (SD-VPN) solution, in which each IoT application is allocated with its own overlay VPN. The VPN tunnels used in this paper are VxLAN based tunnels and we propose to use the SDN controller to push the flow table of each VPN to the related OpenvSwitch via the OpenFlow protocol. The SD-VPN solution can improve the security of an IoT network by separating the VPN traffic and utilizing service chaining. Meanwhile, it also improves the scalability by its overlay VPN nature and the VxLAN technology.