Biblio

Filters: Author is Hamza, Ayyoob  [Clear All Filters]
2023-06-23
Pashamokhtari, Arman, Sivanathan, Arunan, Hamza, Ayyoob, Gharakheili, Hassan Habibi.  2022.  PicP-MUD: Profiling Information Content of Payloads in MUD Flows for IoT Devices. 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). :521–526.
The Manufacturer Usage Description (MUD) standard aims to reduce the attack surface for IoT devices by locking down their behavior to a formally-specified set of network flows (access control entries). Formal network behaviors can also be systematically and rigorously verified in any operating environment. Enforcing MUD flows and monitoring their activity in real-time can be relatively effective in securing IoT devices; however, its scope is limited to endpoints (domain names and IP addresses) and transport-layer protocols and services. Therefore, misconfigured or compromised IoTs may conform to their MUD-specified behavior but exchange unintended (or even malicious) contents across those flows. This paper develops PicP-MUD with the aim to profile the information content of packet payloads (whether unencrypted, encoded, or encrypted) in each MUD flow of an IoT device. That way, certain tasks like cyber-risk analysis, change detection, or selective deep packet inspection can be performed in a more systematic manner. Our contributions are twofold: (1) We analyze over 123K network flows of 6 transparent (e.g., HTTP), 11 encrypted (e.g., TLS), and 7 encoded (e.g., RTP) protocols, collected in our lab and obtained from public datasets, to identify 17 statistical features of their application payload, helping us distinguish different content types; and (2) We develop and evaluate PicP-MUD using a machine learning model, and show how we achieve an average accuracy of 99% in predicting the content type of a flow.
2019-06-28
Hamza, Ayyoob, Gharakheili, Hassan Habibi, Sivaraman, Vijay.  2018.  Combining MUD Policies with SDN for IoT Intrusion Detection. Proceedings of the 2018 Workshop on IoT Security and Privacy. :1-7.

The IETF's push towards standardizing the Manufacturer Usage Description (MUD) grammar and mechanism for specifying IoT device behavior is gaining increasing interest from industry. The ability to control inappropriate communication between devices in the form of access control lists (ACLs) is expected to limit the attack surface on IoT devices; however, little is known about how MUD policies will get enforced in operational networks, and how they will interact with current and future intrusion detection systems (IDS). We believe this paper is the first attempt to translate MUD policies into flow rules that can be enforced using SDN, and in relating exception behavior to attacks that can be detected via off-the-shelf IDS. Our first contribution develops and implements a system that translates MUD policies to flow rules that are proactively configured into network switches, as well as reactively inserted based on run-time bindings of DNS. We use traces of 28 consumer IoT devices taken over several months to evaluate the performance of our system in terms of switch flow-table size and fraction of exception traffic that needs software inspection. Our second contribution identifies the limitations of flow-rules derived from MUD in protecting IoT devices from internal and external network attacks, and we show how our system is able to detect such volumetric attacks (including port scanning, TCP/UDP/ICMP flooding, ARP spoofing, and TCP/SSDP/SNMP reflection) by sending only a very small fraction of exception packets to off-the-shelf IDS.