Biblio

Filters: Author is Frank Köster  [Clear All Filters]
2019-09-27
Janos Sztipanovits, Xenofon Koutsoukos, Gabor Karsai, Shankar Sastry, Claire Tomlin, Werner Damm, Martin Fränzle, Jochem Rieger, Alexander Pretschner, Frank Köster.  2019.  Science of design for societal-scale cyber-physical systems: challenges and opportunities. Cyber-Physical Systems. 5:145-172.

Emerging industrial platforms such as the Internet of Things (IoT), Industrial Internet (II) in the US and Industrie 4.0 in Europe have tremendously accelerated the development of new generations of Cyber-Physical Systems (CPS) that integrate humans and human organizations (H-CPS) with physical and computation processes and extend to societal-scale systems such as traffic networks, electric grids, or networks of autonomous systems where control is dynamically shifted between humans and machines. Although such societal-scale CPS can potentially affect many aspect of our lives, significant societal strains have emerged about the new technology trends and their impact on how we live. Emerging tensions extend to regulations, certification, insurance, and other societal constructs that are necessary for the widespread adoption of new technologies. If these systems evolve independently in different parts of the world, they will ‘hard-wire’ the social context in which they are created, making interoperation hard or impossible, decreasing reusability, and narrowing markets for products and services. While impacts of new technology trends on social policies have received attention, the other side of the coin – to make systems adaptable to social policies – is nearly absent from engineering and computer science design practice. This paper focuses on technologies that can be adapted to varying public policies and presents (1) hard problems and technical challenges and (2) some recent research approaches and opportunities. The central goal of this paper is to discuss the challenges and opportunities for constructing H-CPS that can be parameterized by social context. The focus in on three major application domains: connected vehicles, transactive energy systems, and unmanned aerial vehicles.Abbreviations: CPS: Cyber-physical systems; H-CPS: Human-cyber-physical systems; CV: Connected vehicle; II: Industrial Internet; IoT: Internet of Things

2019-08-21
Janos Sztipanovits, Xenofon Koutsoukos, Gabor Karsai, Shankar Sastry, Claire Tomlin, Werner Damm, Martin Frönzle, Jochem Rieger, Alexander Pretschner, Frank Köster.  2019.  Science of design for societal-scale cyber-physical systems: challenges and opportunities. Cyber-Physical Systems. 5:145-172.

Emerging industrial platforms such as the Internet of Things (IoT), Industrial Internet (II) in the US and Industrie 4.0 in Europe have tremendously accelerated the development of new generations of Cyber-Physical Systems (CPS) that integrate humans and human organizations (H-CPS) with physical and computation processes and extend to societal-scale systems such as traffic networks, electric grids, or networks of autonomous systems where control is dynamically shifted between humans and machines. Although such societal-scale CPS can potentially affect many aspect of our lives, significant societal strains have emerged about the new technology trends and their impact on how we live. Emerging tensions extend to regulations, certification, insurance, and other societal constructs that are necessary for the widespread adoption of new technologies. If these systems evolve independently in different parts of the world, they will ‘hard-wire’ the social context in which they are created, making interoperation hard or impossible, decreasing reusability, and narrowing markets for products and services. While impacts of new technology trends on social policies have received attention, the other side of the coin – to make systems adaptable to social policies – is nearly absent from engineering and computer science design practice. This paper focuses on technologies that can be adapted to varying public policies and presents (1) hard problems and technical challenges and (2) some recent research approaches and opportunities. The central goal of this paper is to discuss the challenges and opportunities for constructing H-CPS that can be parameterized by social context. The focus in on three major application domains: connected vehicles, transactive energy systems, and unmanned aerial vehicles.Abbreviations: CPS: Cyber-physical systems; H-CPS: Human-cyber-physical systems; CV: Connected vehicle; II: Industrial Internet; IoT: Internet of Things

Karsten Lemmer, Werner Damm, Janos Stzipanovits, Shankar Sastry, Claire Tomlin, Frank Köster, Meike Jipp.  2019.  Societal and Technological Research Challenges for Highly Automated Road Transportation Systems in Germany and the US: Diversities and Synergy Potentials. Workshop on Societal and Technological Research Challenges for Highly Automated Road Transportation Systems in Germany and the US: Diversities and Synergy Potentials.
Anirudh Unni, Benedikt Kretzmeyer, Klas Ihme, Frank Köster, Meike Jipp, Jochem W. Rieger.  2018.  Demonstrating brain-level interactions between working memory load and frustration while driving using functional near-infrared spectroscopy. 2nd International Neuroergonomics Conference.

Mental workload is a popular concept in ergonomics as it provides an intuitive explanation why exceedingly cognitive task demands result in a decrease in task performance and increase the risk of fatal incidents while driving. At the same time, affective states such as frustration, also play a role in traffic safety as they increase the tendency for speedy and aggressive driving and may even degrade cognitive processing capacities. To reduce accidents due to dangerous effects of degraded cognitive processing capacities and affective biases causing human errors, it is necessary to continuously assess multiple user states simultaneously to better understand potential interactions. In two previous studies, we measured brain activity with functional near-infrared spectroscopy (fNIRS) for separate brain based prediction of working memory load (WML) (Unni et al., 2017) and frustration levels (Ihme et al. submitted) while driving. Here, we report results from a study designed to predict simultaneously manipulated WML and frustration using data driven machine learning approaches from whole-head fNIRS brain activation measurements. 

Sven Hallerbach, Yiqun Xia, Ulrich Eberle, Frank Köster.  2018.  Simulation-based Identification of Critical Scenarios for Cooperative and Automated Vehicles. WCX World Congress Experience.

One of the major challenges for the automotive industry will be the release and validation of cooperative and automated vehicles. The immense driving distance that needs to be covered for a conventional validation process requires the development of new testing procedures. Further, due to limited market penetration in the beginning, the driving behavior of other human traffic participants, regarding a mixed traffic environment, will have a significant impact on the functionality of these vehicles.In this paper, a generic simulation-based toolchain for the model-in-the-loop identification of critical scenarios will be introduced. The proposed methodology allows the identification of critical scenarios with respect to the vehicle development process. The current development status of cooperative and automated vehicle determines the availability of testable simulation models, software, and components.The identification process is realized by a coupled simulation framework. A combination of a vehicle dynamics simulation that includes a digital prototype of the cooperative and automated vehicle, a traffic simulation that provides the surrounding environment, and a cooperation simulation including cooperative features, is used to establish a suitable comprehensive simulation environment. The behavior of other traffic participants is considered in the traffic simulation environment.The criticality of the scenarios is determined by appropriate metrics. Within the context of this paper, both standard safety metrics and newly developed traffic quality metrics are used for evaluation. Furthermore, we will show how the use of these new metrics allows for investigating the impact of cooperative and automated vehicles on traffic. The identified critical scenarios are used as an input for X-in-the-Loop methods, test benches, and proving ground tests to achieve an even more precise comparison to real-world situations. As soon as the vehicle development process is in a mature state, the digital prototype becomes a “digital twin” of the cooperative and automated vehicle.

Julian Schindler, Frank Köster.  2016.  A Model-Based Approach for Performing Successful Multi-Driver Scenarios. Driving Simulation Conference.

When designing driving simulator studies, sometimes high efforts have to be spent to make them successful. Some drivers may not behave as desired, leading to situations unforeseen by the developers. When looking at multi-driver studies, where multiple drivers need to interact with each other in one virtual environment, the probability of performing a successful study is even lower, as the behaviour of the human drivers cannot be fully controlled. While [Oel15b] already proposed guidelines for the creation of such scenarios, this paper describes how the probability of success can be monitored and even enhanced during scenario execution. Therefore, it describes an approach where the probability of success is modelled and where the scenario is dynamically adapted to provide higher rates of success.