Biblio

Filters: Author is Qiao, Lei  [Clear All Filters]
2022-08-26
Chen, Xi, Qiao, Lei, Liu, Hongbiao, Ma, Zhi, Jiang, Jingjing.  2021.  Security Verification Method of Embedded Operating System Semaphore Mechanism based on Coq. 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). :392–395.
The semaphore mechanism is an important part of the embedded operating system. Therefore, it is very necessary to ensure its safety. Traditional software testing methods are difficult to ensure 100% coverage of the program. Therefore, it is necessary to adopt a formal verfication method which proves the correctness of the program theoretically. This paper proposes a proof framework based on the theorem proof tool Coq: modeling the semaphore mechanism, extracting important properties from the requirement documents, and finally verifying that the semaphore mechanism can meet these properties, which means the correctness of the semaphore mechanism is proved and also illustrates the feasibility of the verification framework proposed in this paper, which lays a foundation for the verification of other modules of operating systems.
2019-08-26
Sun, Haiyong, Lei, Hang, Qiao, Lei, Yang, Zheng.  2018.  Formal Verification of GP Specification Based Embedded Operating System. Proceedings of the 2Nd International Conference on Computer Science and Application Engineering. :188:1-188:5.

Global Platform (GP)1 specifications accepted as de facto industry standards are widely used for the development of embedded operating system running on secure chip devices. A promising approach to demonstrating the implementation of an OS meets its specification is formal verification. However, most previous work on operating system verification targets high-level source programs proving the correspondence between abstract specification and high-level implementation but ignoring the machine-code level implementation parts. Thus, this kind of correspondence proofs stay in a shallow level. In this paper, we present a novel methodology for formal specifying and certifying the implementation of an embedded operating system strictly follows the GP specification. We establish a multiple abstraction layers framework that has four layers, from up to down, which are Formal Global Platform Layer (FGPL), Formal Specification High Layer (FSHL), Formal Specification Low Layer (FSLL) and Formal Assembly Machine Layer (FAML). To demonstrate the effectiveness of our methodology, we take the communication module of our Trust-E operating system (running on an extended CompCert ARM assembly machine model) as a case study and have successfully constructed a multi-layered proof, fully formalized in the Coq proof assistant. Some parts of the module are written in C and some are written in assembly; we certify that all codes implementation follow Global Platform specification.