Biblio

Filters: Author is Xia, X.  [Clear All Filters]
2019-08-26
Lu, B., Qin, Z., Yang, M., Xia, X., Zhang, R., Wang, L..  2018.  Spoofing Attack Detection Using Physical Layer Information in Cross-Technology Communication. 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1-2.

Recent advances in Cross-Technology Communication (CTC) enable the coexistence and collaboration among heterogeneous wireless devices operating in the same ISM band (e.g., Wi-Fi, ZigBee, and Bluetooth in 2.4 GHz). However, state-of-the-art CTC schemes are vulnerable to spoofing attacks since there is no practice authentication mechanism yet. This paper proposes a scheme to enable the spoofing attack detection for CTC in heterogeneous wireless networks by using physical layer information. First, we propose a model to detect ZigBee packets and measure the corresponding Received Signal Strength (RSS) on Wi-Fi devices. Then, we design a collaborative mechanism between Wi-Fi and ZigBee devices to detect the spoofing attack. Finally, we implement and evaluate our methods through experiments on commercial off-the- shelf (COTS) Wi-Fi and ZigBee devices. Our results show that it is possible to measure the RSS of ZigBee packets on Wi-Fi device and detect spoofing attack with both a high detection rate and a low false positive rate in heterogeneous wireless networks.

2021-04-08
Wu, X., Yang, Z., Ling, C., Xia, X..  2016.  Artificial-Noise-Aided Message Authentication Codes With Information-Theoretic Security. IEEE Transactions on Information Forensics and Security. 11:1278–1290.
In the past, two main approaches for the purpose of authentication, including information-theoretic authentication codes and complexity-theoretic message authentication codes (MACs), were almost independently developed. In this paper, we consider to construct new MACs, which are both computationally secure and information-theoretically secure. Essentially, we propose a new cryptographic primitive, namely, artificial-noise-aided MACs (ANA-MACs), where artificial noise is used to interfere with the complexity-theoretic MACs and quantization is further employed to facilitate packet-based transmission. With a channel coding formulation of key recovery in the MACs, the generation of standard authentication tags can be seen as an encoding process for the ensemble of codes, where the shared key between Alice and Bob is considered as the input and the message is used to specify a code from the ensemble of codes. Then, we show that artificial noise in ANA-MACs can be well employed to resist the key recovery attack even if the opponent has an unlimited computing power. Finally, a pragmatic approach for the analysis of ANA-MACs is provided, and we show how to balance the three performance metrics, including the completeness error, the false acceptance probability, and the conditional equivocation about the key. The analysis can be well applied to a class of ANA-MACs, where MACs with Rijndael cipher are employed.