Biblio

Filters: Author is Kant, Krishna  [Clear All Filters]
2020-02-17
Jolfaei, Alireza, Kant, Krishna.  2019.  Privacy and Security of Connected Vehicles in Intelligent Transportation System. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks – Supplemental Volume (DSN-S). :9–10.
The paper considers data security and privacy issues in intelligent transportation systems which involve data streams coming out from individual vehicles to road side units. In this environment, there are issues in regards to the scalability of key management and computation limitations at the edge of the network. To address these issues, we suggest the formation of groups in the vehicular layer, where a group leader is assigned to communicate with group members and the road side unit. We propose a lightweight permutation mechanism for preserving the confidentiality and privacy of sensory data.
2019-09-23
Ramijak, Dusan, Pal, Amitangshu, Kant, Krishna.  2018.  Pattern Mining Based Compression of IoT Data. Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking. :12:1–12:6.
The increasing proliferation of the Internet of Things (IoT) devices and systems result in large amounts of highly heterogeneous data to be collected. Although at least some of the collected sensor data is often consumed by the real-time decision making and control of the IoT system, that is not the only use of such data. Invariably, the collected data is stored, perhaps in some filtered or downselected fashion, so that it can be used for a variety of lower-frequency operations. It is expected that in a smart city environment with numerous IoT deployments, the volume of such data can become enormous. Therefore, mechanisms for lossy data compression that provide a trade-off between compression ratio and data usefulness for offline statistical analysis becomes necessary. In this paper, we discuss several simple pattern mining based compression strategies for multi-attribute IoT data streams. For each method, we evaluate the compressibility of the method vs. the level of similarity between original and compressed time series in the context of the home energy management system.