Biblio

Filters: Author is Linda, O.  [Clear All Filters]
2015-05-05
Linda, O., Wijayasekara, D., Manic, M., McQueen, M..  2014.  Optimal placement of Phasor Measurement Units in power grids using Memetic Algorithms. Industrial Electronics (ISIE), 2014 IEEE 23rd International Symposium on. :2035-2041.

Wide area monitoring, protection and control for power network systems are one of the fundamental components of the smart grid concept. Synchronized measurement technology such as the Phasor Measurement Units (PMUs) will play a major role in implementing these components and they have the potential to provide reliable and secure full system observability. The problem of Optimal Placement of PMUs (OPP) consists of locating a minimal set of power buses where the PMUs must be placed in order to provide full system observability. In this paper a novel solution to the OPP problem using a Memetic Algorithm (MA) is proposed. The implemented MA combines the global optimization power of genetic algorithms with local solution tuning using the hill-climbing method. The performance of the proposed approach was demonstrated on IEEE benchmark power networks as well as on a segment of the Idaho region power network. It was shown that the proposed solution using a MA features significantly faster convergence rate towards the optimum solution.
 

2015-05-06
Vollmer, T., Manic, M., Linda, O..  2014.  Autonomic Intelligent Cyber-Sensor to Support Industrial Control Network Awareness. Industrial Informatics, IEEE Transactions on. 10:1647-1658.

The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of autonomic computing and a simple object access protocol (SOAP)-based interface to metadata access points (IF-MAP) external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, and self-managed framework. The contribution of this paper is twofold: 1) A flexible two-level communication layer based on autonomic computing and service oriented architecture is detailed and 2) three complementary modules that dynamically reconfigure in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real-world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific operating system and port configurations. In addition, the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.

Vollmer, T., Manic, M., Linda, O..  2014.  Autonomic Intelligent Cyber-Sensor to Support Industrial Control Network Awareness. Industrial Informatics, IEEE Transactions on. 10:1647-1658.

The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of autonomic computing and a simple object access protocol (SOAP)-based interface to metadata access points (IF-MAP) external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, and self-managed framework. The contribution of this paper is twofold: 1) A flexible two-level communication layer based on autonomic computing and service oriented architecture is detailed and 2) three complementary modules that dynamically reconfigure in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real-world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific operating system and port configurations. In addition, the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.