Biblio

Filters: Author is Johnson, Brian K.  [Clear All Filters]
2023-01-20
Alanzi, Mataz, Challa, Hari, Beleed, Hussain, Johnson, Brian K., Chakhchoukh, Yacine, Reen, Dylan, Singh, Vivek Kumar, Bell, John, Rieger, Craig, Gentle, Jake.  2022.  Synchrophasors-based Master State Awareness Estimator for Cybersecurity in Distribution Grid: Testbed Implementation & Field Demonstration. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
The integration of distributed energy resources (DERs) and expansion of complex network in the distribution grid requires an advanced two-level state estimator to monitor the grid health at micro-level. The distribution state estimator will improve the situational awareness and resiliency of distributed power system. This paper implements a synchrophasors-based master state awareness (MSA) estimator to enhance the cybersecurity in distribution grid by providing a real-time estimation of system operating states to control center operators. In this paper, the implemented MSA estimator utilizes only phasor measurements, bus magnitudes and angles, from phasor measurement units (PMUs), deployed in local substations, to estimate the system states and also detects data integrity attacks, such as load tripping attack that disconnects the load. To validate the proof of concept, we implement this methodology in cyber-physical testbed environment at the Idaho National Laboratory (INL) Electric Grid Security Testbed. Further, to address the "valley of death" and support technology commercialization, field demonstration is also performed at the Critical Infrastructure Test Range Complex (CITRC) at the INL. Our experimental results reveal a promising performance in detecting load tripping attack and providing an accurate situational awareness through an alert visualization dashboard in real-time.
2022-03-14
Lingaraju, Kaushik, Gui, Jianzhong, Johnson, Brian K., Chakhchoukh, Yacine.  2021.  Simulation of the Effect of False Data Injection Attacks on SCADA using PSCAD/EMTDC. 2020 52nd North American Power Symposium (NAPS). :1—5.
Transient simulation is a critical task of validating the dynamic model of the power grid. We propose an off-line method for validating dynamic grid models and assessing the dynamic security of the grid in the presence of cyberattacks. Simulations are executed in PowerWorld and PSCAD/EMTDC to compare the impact on the grid of cyber-attacks. Generators in the IEEE 14-bus system have been modified to match the need of adjustment in modern power system operation. To get effective measurements for state estimation, SCADA polling model is reproduced in PSCAD/EMTDC by providing controlled sampling frequency. The results of a tripped line case and injecting false data to the loads caused by cyberattacks is presented and analyzed.
2019-11-19
Khaledian, Parviz, Johnson, Brian K., Hemati, Saied.  2018.  Power Grid Security Improvement by Remedial Action Schemes Using Vulnerability Assessment Based on Fault Chains and Power Flow. 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). :1-6.

The risk of large-scale blackouts and cascading failures in power grids can be due to vulnerable transmission lines and lack of proper remediation techniques after recognizing the first failure. In this paper, we assess the vulnerability of a system using fault chain theory and a power flow-based method, and calculate the probability of large-scale blackout. Further, we consider a Remedial Action Scheme (RAS) to reduce the vulnerability of the system and to harden the critical components against intentional attacks. To identify the most critical lines more efficiently, a new vulnerability index is presented. The effectiveness of the new index and the impact of the applied RAS is illustrated on the IEEE 14-bus test system.