Biblio

Filters: Author is Chollet, Stéphanie  [Clear All Filters]
2023-02-03
Desuert, Arthur, Chollet, Stéphanie, Pion, Laurent, Hely, David.  2022.  A Middleware for Secure Integration of Heterogeneous Edge Devices. 2022 IEEE International Conference on Edge Computing and Communications (EDGE). :83–92.
Connected devices are being deployed at a steady rate, providing services like data collection. Pervasive applications rely on those edge devices to seamlessly provide services to users. To connect applications and edge devices, using a middleware has been a popular approach. The research is active on the subject as there are many open challenges. The secure management of the edge devices and the security of the middleware are two of them. As security is a crucial requirement for pervasive environment, we propose a middleware architecture easing the secure use of edge devices for pervasive applications, while supporting the heterogeneity of communication protocols and the dynamism of devices. Because of the heterogeneity in protocols and security features, not all edge devices are equally secure. To allow the pervasive applications to gain control over this heterogeneous security, we propose a model to describe edge devices security. This model is accessible by the applications through our middleware. To validate our work, we developed a demonstrator of our middleware and we tested it in a concrete scenario.
ISSN: 2767-9918
2019-11-26
Chollet, Stéphanie, Pion, Laurent, Barbot, Nicolas, Michel, Clément.  2018.  Secure IoT for a Pervasive Platform. 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :113-118.

Nowadays, the proliferation of smart, communication-enable devices is opening up many new opportunities of pervasive applications. A major requirement of pervasive applications is to be secured. The complexity to secure pervasive systems is to address a end-to-end security level: from the device to the services according to the entire life cycle of devices, applications and platform. In this article, we propose a solution combining both hardware and software elements to secure communications between devices and pervasive platform based on certificates issued from a Public Key Infrastructure. Our solution is implemented and validated with a real device extended by a secure element and our own Public Key Infrastructure.