Biblio

Filters: Author is Hatzinakos, Dimitrios  [Clear All Filters]
2020-03-23
Kaul, Sonam Devgan, Hatzinakos, Dimitrios.  2019.  Learning Automata Based Secure Multi Agent RFID Authentication System. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.
Radio frequency identification wireless sensing technology widely adopted and developed from last decade and has been utilized for monitoring and autonomous identification of objects. However, wider utilization of RFID technologies has introduced challenges such as preserving security and privacy of sensitive data while maintaining the high quality of service. Thus, in this work, we will deliberately build up a RFID system by utilizing learning automata based multi agent intelligent system to greatly enhance and secure message transactions and to improve operational efficiency. The incorporation of these two advancements and technological developments will provide maximum benefit in terms of expertly and securely handle data in RFID scenario. In proposed work, learning automata inbuilt RFID tags or assumed players choose their optimal strategy via enlarging its own utility function to achieve long term benefit. This is possible if they transmit their utility securely to back end server and then correspondingly safely get new utility function from server to behave optimally in its environment. Hence, our proposed authentication protocol, expertly transfer utility from learning automata inbuilt tags to reader and then to server. Moreover, we verify the security and privacy of our proposed system by utilizing automatic formal prover Scyther tool.
2019-12-30
Taha, Bilal, Hatzinakos, Dimitrios.  2019.  Emotion Recognition from 2D Facial Expressions. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). :1–4.
This work proposes an approach to find and learn informative representations from 2 dimensional gray-level images for facial expression recognition application. The learned features are obtained from a designed convolutional neural network (CNN). The developed CNN enables us to learn features from the images in a highly efficient manner by cascading different layers together. The developed model is computationally efficient since it does not consist of a huge number of layers and at the same time it takes into consideration the overfitting problem. The outcomes from the developed CNN are compared to handcrafted features that span texture and shape features. The experiments conducted on the Bosphours database show that the developed CNN model outperforms the handcrafted features when coupled with a Support Vector Machines (SVM) classifier.