Biblio

Filters: Author is Naghizadeh, Parinaz  [Clear All Filters]
2022-10-16
Sharma Oruganti, Pradeep, Naghizadeh, Parinaz, Ahmed, Qadeer.  2021.  The Impact of Network Design Interventions on CPS Security. 2021 60th IEEE Conference on Decision and Control (CDC). :3486–3492.
We study a game-theoretic model of the interactions between a Cyber-Physical System’s (CPS) operator (the defender) against an attacker who launches stepping-stone attacks to reach critical assets within the CPS. We consider that, in addition to optimally allocating its security budget to protect the assets, the defender may choose to modify the CPS through network design interventions. In particular, we propose and motivate four ways in which the defender can introduce additional nodes in the CPS: these nodes may be intended as additional safeguards, be added for functional or structural redundancies, or introduce additional functionalities in the system. We analyze the security implications of each of these design interventions, and evaluate their impacts on the security of an automotive network as our case study. We motivate the choice of the attack graph for this case study and elaborate how the parameters in the resulting security game are selected using the CVSS metrics and the ISO-26262 ASIL ratings as guidance. We then use numerical experiments to verify and evaluate how our proposed network interventions may be used to guide improvements in automotive security.
2019-12-30
Ahn, Surin, Gorlatova, Maria, Naghizadeh, Parinaz, Chiang, Mung, Mittal, Prateek.  2018.  Adaptive Fog-Based Output Security for Augmented Reality. Proceedings of the 2018 Morning Workshop on Virtual Reality and Augmented Reality Network. :1–6.
Augmented reality (AR) technologies are rapidly being adopted across multiple sectors, but little work has been done to ensure the security of such systems against potentially harmful or distracting visual output produced by malicious or bug-ridden applications. Past research has proposed to incorporate manually specified policies into AR devices to constrain their visual output. However, these policies can be cumbersome to specify and implement, and may not generalize well to complex and unpredictable environmental conditions. We propose a method for generating adaptive policies to secure visual output in AR systems using deep reinforcement learning. This approach utilizes a local fog computing node, which runs training simulations to automatically learn an appropriate policy for filtering potentially malicious or distracting content produced by an application. Through empirical evaluations, we show that these policies are able to intelligently displace AR content to reduce obstruction of real-world objects, while maintaining a favorable user experience.