Biblio

Filters: Author is Basumallik, Sagnik  [Clear All Filters]
2021-11-08
Ma, Rui, Basumallik, Sagnik, Eftekharnejad, Sara, Kong, Fanxin.  2020.  Recovery-based Model Predictive Control for Cascade Mitigation under Cyber-Physical Attacks. 2020 IEEE Texas Power and Energy Conference (TPEC). :1–6.
The ever-growing threats of cascading failures due to cyber-attacks pose a significant challenge to power grid security. A wrong system state estimate caused by a false data injection attack could lead to a wrong control actions and take the system into a more insecure operating condition. As a consequence, an attack-resilient failure mitigation strategy needs to be developed to correctly determine control actions to prevent the propagation of cascades. In this paper, a recovery-based model predictive control methodology is developed to eliminate power system component violations following coordinated cyber-physical attacks where physical attacks are masked by targeted false data injection attacks. Specifically, to address the problem of wrong system state estimation with compromised data, a developed methodology recovers the incorrect states from historical data rather than utilizing the tampered data, and thus allowing control centers to identify proper control actions. Additionally, instead of using a one-step method to optimize control actions, the recovery-based model predictive control methodology scheme incorporates the effect of controls over a finite time horizon and the attack detection delay to make appropriate control decisions. Case studies, performed on IEEE 30-bus and Illinois 200-bus systems, show that the developed recovery-based model predictive control methodology scheme is robust to coordinated attacks and efficient in mitigating cascades.
2019-12-30
Basumallik, Sagnik, Eftekharnejad, Sara, Davis, Nathan, Nuthalapati, Nagarjuna, Johnson, Brian K.  2018.  Cyber Security Considerations on PMU-Based State Estimation. Proceedings of the Fifth Cybersecurity Symposium. :14:1-14:4.

State estimation allows continuous monitoring of a power system by estimating the power system state variables from measurement data. Unfortunately, the measurement data provided by the devices can serve as attack vectors for false data injection attacks. As more components are connected to the internet, power system is exposed to various known and unknown cyber threats. Previous investigations have shown that false data can be injected on data from traditional meters that bypasses bad data detection systems. This paper extends this investigation by giving an overview of cyber security threats to phasor measurement units, assessing the impact of false data injection on hybrid state estimators and suggesting security recommendations. Simulations are performed on IEEE-30 and 118 bus test systems.