Biblio
Filters: Author is Pahl, Marc-Oliver [Clear All Filters]
Cyber-Physical Anomaly Detection for ICS. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :950–955.
.
2021. Industrial Control Systems (ICS) are complex systems made up of many components with different tasks. For a safe and secure operation, each device needs to carry out its tasks correctly. To monitor a system and ensure the correct behavior of systems, anomaly detection is used.Models of expected behavior often rely only on cyber or physical features for anomaly detection. We propose an anomaly detection system that combines both types of features to create a dynamic fingerprint of an ICS. We present how a cyber-physical anomaly detection using sound on the physical layer can be designed, and which challenges need to be overcome for a successful implementation. We perform an initial evaluation for identifying actions of a 3D printer.
Authenticating IDS autoencoders using multipath neural networks. 2021 5th Cyber Security in Networking Conference (CSNet). :1—9.
.
2021. An Intrusion Detection System (IDS) is a core element for securing critical systems. An IDS can use signatures of known attacks, or an anomaly detection model for detecting unknown attacks. Attacking an IDS is often the entry point of an attack against a critical system. Consequently, the security of IDSs themselves is imperative. To secure model-based IDSs, we propose a method to authenticate the anomaly detection model. The anomaly detection model is an autoencoder for which we only have access to input-output pairs. Inputs consist of time windows of values from sensors and actuators of an Industrial Control System. Our method is based on a multipath Neural Network (NN) classifier, a newly proposed deep learning technique. The idea is to characterize errors of an IDS's autoencoder by using a multipath NN's confidence measure \$c\$. We use the Wilcoxon-Mann-Whitney (WMW) test to detect a change in the distribution of the summary variable \$c\$, indicating that the autoencoder is not working properly. We compare our method to two baselines. They consist in using other summary variables for the WMW test. We assess the performance of these three methods using simulated data. Among others, our analysis shows that: 1) both baselines are oblivious to some autoencoder spoofing attacks while 2) the WMW test on a multipath NN's confidence measure enables detecting eventually any autoencoder spoofing attack.
Information-Centric IoT Middleware Overlay: VSL. 2019 International Conference on Networked Systems (NetSys). :1–8.
.
2019. The heart of the Internet of Things (IoT) is data. IoT services processes data from sensors that interface their physical surroundings, and from other software such as Internet weather databases. They produce data to control physical environments via actuators, and offer data to other services. More recently, service-centric designs for managing the IoT have been proposed. Data-centric or name-based communication architectures complement these developments very well. Especially for edge-based or site-local installations, data-centric Internet architectures can be implemented already today, as they do not require any changes at the core. We present the Virtual State Layer (VSL), a site-local data-centric architecture for the IoT. Special features of our solution are full separation of logic and data in IoT services, offering the data-centric VSL interface directly to developers, which significantly reduces the overall system complexity, explicit data modeling, a semantically-rich data item lookup, stream connections between services, and security-by-design. We evaluate our solution regarding usability, performance, scalability, resilience, energy efficiency, and security.