Biblio

Filters: Author is Hernandez, Alexander A.  [Clear All Filters]
2020-01-27
Cayabyab, Gerald T., Sison, Ariel M., Hernandez, Alexander A..  2019.  GISKOP: A Modified Key Scheduling Operation of International Data Encryption Algorithm Using Serpent Key Scheduling. Proceedings of the 2nd International Conference on Computing and Big Data. :53–57.
Cryptography is a method of storing and transmitting data in a particular form. Only those for whom it is intended can read, use it, and return it back to the original data by using various techniques. The International Data Encryption Algorithm "IDEA" is a block cipher that works with 64-bit plaintext block and ciphertext blocks and it has a 128-bit input key. This paper describe the designing and implementation of a modified key schedule operation of IDEA called GISKOP. It uses the same number of rounds and output transformation that operates using 128 bit user input plaintext and a modified way of key scheduling operation of 256 bit keys. The modified algorithm uses Serpent key scheduling operation to derive the different sub keys to be used in each rounds. The algorithm was implemented to provide better security on user's password within the Document Management System to protect user's data within the cloud database. It has gone through initial testing and evaluations with very encouraging results.
2020-06-22
Nisperos, Zhella Anne V., Gerardo, Bobby D., Hernandez, Alexander A..  2019.  A Coverless Approach to Data Hiding Using DNA Sequences. 2019 2nd World Symposium on Communication Engineering (WSCE). :21–25.
In recent years, image steganography is being considered as one of the methods to secure the confidentiality of sensitive and private data sent over networks. Conventional image steganography techniques use cover images to hide secret messages. These techniques are susceptible to steganalysis algorithms based on anomaly detection. This paper proposes a new approach to image steganography without using cover images. In addition, it utilizes Deoxyribonucleic Acid (DNA) sequences. DNA sequences are used to generate key and stego-image. Experimental results show that the use of DNA sequences in this technique offer very low cracking probability and the coverless approach contributes to its high embedding capacity.