Biblio

Filters: Author is Zhan, Ying  [Clear All Filters]
2020-02-10
Zhan, Ying, Qin, Jin, Huang, Tao, Wu, Kang, Hu, Dan, Zhao, Zhengang, Wang, Yuntao, Cao, Ying, Jiao, RunCheng, Medjadba, Yasmine et al..  2019.  Hyperspectral Image Classification Based on Generative Adversarial Networks with Feature Fusing and Dynamic Neighborhood Voting Mechanism. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :811–814.

Classifying Hyperspectral images with few training samples is a challenging problem. The generative adversarial networks (GAN) are promising techniques to address the problems. GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. In this paper, by introducing multilayer features fusion in GAN and a dynamic neighborhood voting mechanism, a novel algorithm for HSIs classification based on 1-D GAN was proposed. Extracting and fusing multiple layers features in discriminator, and using a little labeled samples, we fine-tuned a new sample 1-D CNN spectral classifier for HSIs. In order to improve the accuracy of the classification, we proposed a dynamic neighborhood voting mechanism to classify the HSIs with spatial features. The obtained results show that the proposed models provide competitive results compared to the state-of-the-art methods.