Biblio

Filters: Author is Chen, Lu  [Clear All Filters]
2021-12-21
Chen, Lu, Dai, Zaojian, CHEN, Mu, Li, Nige.  2021.  Research on the Security Protection Framework of Power Mobile Internet Services Based on Zero Trust. 2021 6th International Conference on Smart Grid and Electrical Automation (ICSGEA). :65–68.
Under the background of increasingly severe security situation, the new working mode of power mobile internet business anytime and anywhere has greatly increased the complexity of network interaction. At the same time, various means of breaking through the boundary protection and moving laterally are emerging in an endless stream. The existing boundary-based mobility The security protection architecture is difficult to effectively respond to the current complex and diverse network attacks and threats, and faces actual combat challenges. This article first analyzes the security risks faced by the existing power mobile Internet services, and conducts a collaborative analysis of the key points of zero-trust based security protection from multiple perspectives such as users, terminals, and applications; on this basis, from identity security authentication, continuous trust evaluation, and fine-grained access The dimension of control, fine-grained access control based on identity trust, and the design of a zero-trust-based power mobile interconnection business security protection framework to provide theoretical guidance for power mobile business security protection.
2020-02-17
Chen, Lu, Ma, Yuanyuan, SHAO, Zhipeng, CHEN, Mu.  2019.  Research on Mobile Application Local Denial of Service Vulnerability Detection Technology Based on Rule Matching. 2019 IEEE International Conference on Energy Internet (ICEI). :585–590.
Aiming at malicious application flooding in mobile application market, this paper proposed a method based on rule matching for mobile application local denial of service vulnerability detection. By combining the advantages of static detection and dynamic detection, static detection adopts smali abstract syntax tree as rule matching object. This static detection method has higher code coverage and better guarantees the integrity of mobile application information. The dynamic detection performs targeted hook verification on the static detection result, which improves the accuracy of the detection result and saves the test workload at the same time. This dynamic detection method has good scalability, can be upgraded with discovery and variants of the vulnerability. Through experiments, it is verified that the mobile application with this vulnerability can be accurately found in a large number of mobile applications, and the effectiveness of the system is verified.