Biblio

Filters: Author is Halabi, Talal  [Clear All Filters]
2023-05-12
Halabi, Talal, Haque, Israat, Karimipour, Hadis.  2022.  Adaptive Control for Security and Resilience of Networked Cyber-Physical Systems: Where Are We? 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA). :239–247.

Cyber-Physical Systems (CPSs), a class of complex intelligent systems, are considered the backbone of Industry 4.0. They aim to achieve large-scale, networked control of dynamical systems and processes such as electricity and gas distribution networks and deliver pervasive information services by combining state-of-the-art computing, communication, and control technologies. However, CPSs are often highly nonlinear and uncertain, and their intrinsic reliance on open communication platforms increases their vulnerability to security threats, which entails additional challenges to conventional control design approaches. Indeed, sensor measurements and control command signals, whose integrity plays a critical role in correct controller design, may be interrupted or falsely modified when broadcasted on wireless communication channels due to cyber attacks. This can have a catastrophic impact on CPS performance. In this paper, we first conduct a thorough analysis of recently developed secure and resilient control approaches leveraging the solid foundations of adaptive control theory to achieve security and resilience in networked CPSs against sensor and actuator attacks. Then, we discuss the limitations of current adaptive control strategies and present several future research directions in this field.

2023-02-03
Halabi, Talal, Abusitta, Adel, Carvalho, Glaucio H.S., Fung, Benjamin C. M..  2022.  Incentivized Security-Aware Computation Offloading for Large-Scale Internet of Things Applications. 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech). :1–6.

With billions of devices already connected to the network's edge, the Internet of Things (IoT) is shaping the future of pervasive computing. Nonetheless, IoT applications still cannot escape the need for the computing resources available at the fog layer. This becomes challenging since the fog nodes are not necessarily secure nor reliable, which widens even further the IoT threat surface. Moreover, the security risk appetite of heterogeneous IoT applications in different domains or deploy-ment contexts should not be assessed similarly. To respond to this challenge, this paper proposes a new approach to optimize the allocation of secure and reliable fog computing resources among IoT applications with varying security risk level. First, the security and reliability levels of fog nodes are quantitatively evaluated, and a security risk assessment methodology is defined for IoT services. Then, an online, incentive-compatible mechanism is designed to allocate secure fog resources to high-risk IoT offloading requests. Compared to the offline Vickrey auction, the proposed mechanism is computationally efficient and yields an acceptable approximation of the social welfare of IoT devices, allowing to attenuate security risk within the edge network.

2022-09-16
Massey, Keith, Moazen, Nadia, Halabi, Talal.  2021.  Optimizing the Allocation of Secure Fog Resources based on QoS Requirements. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :143—148.
Fog computing plays a critical role in the provisioning of computing tasks in the context of Internet of Things (IoT) services. However, the security of IoT services against breaches and attacks relies heavily on the security of fog resources, which must be properly implemented and managed. Increasing security investments and integrating the security aspect into the core processes and operations of fog computing including resource management will increase IoT service protection as well as the trustworthiness of fog service providers. However, this requires careful modeling of the security requirements of IoT services as well as theoretical and experimental evaluation of the tradeoff between security and performance in fog infrastructures. To this end, this paper explores a new model for fog resource allocation according to security and Quality of Service (QoS). The problem is modeled as a multi-objective linear optimization problem and solved using conventional, off-the-shelf optimizers by applying the preemptive method. Specifically, two objective functions were defined: one representing the satisfaction of the security design requirements of IoT services and another that models the communication delay among the different virtual machines belonging to the same service request, which might be deployed on different intermediary fog nodes. The simulation results show that the optimization is efficient and achieves the required level of scalability in fog computing. Moreover, a tradeoff needs to be pondered between the two criteria during the resource allocation process.
2022-05-10
Halabi, Talal.  2021.  Adaptive Security Risk Mitigation in Edge Computing: Randomized Defense Meets Prospect Theory. 2021 IEEE/ACM Symposium on Edge Computing (SEC). :432–437.

Edge computing supports the deployment of ubiquitous, smart services by providing computing and storage closer to terminal devices. However, ensuring the full security and privacy of computations performed at the edge is challenging due to resource limitation. This paper responds to this challenge and proposes an adaptive approach to defense randomization among the edge data centers via a stochastic game, whose solution corresponds to the optimal security deployment at the network's edge. Moreover, security risk is evaluated subjectively based on Prospect Theory to reflect realistic scenarios where the attacker and the edge system do not similarly perceive the status of the infrastructure. The results show that a non-deterministic defense policy yields better security compared to a static defense strategy.

2022-01-31
Patel, Jatin, Halabi, Talal.  2021.  Optimizing the Performance of Web Applications in Mobile Cloud Computing. 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud). :33—37.
Cloud computing adoption is on the rise. Many organizations have decided to shift their workload to the cloud to benefit from the scalability, resilience, and cost reduction characteristics. Mobile Cloud Computing (MCC) is an emerging computing paradigm that also provides many advantages to mobile users. Mobile devices function on wireless internet connectivity, which entails issues of limited bandwidth and network congestion. Hence, the primary focus of Web applications in MCC is on improving performance by quickly fulfilling customer's requests to improve service satisfaction. This paper investigates a new approach to caching data in these applications using Redis, an in-memory data store, to enhance Quality of Service. We highlight the two implementation approaches of fetching the data of an application either directly from the database or from the cache. Our experimental analysis shows that, based on performance metrics such as response time, throughput, latency, and number of hits, the caching approach achieves better performance by speeding up the data retrieval by up to four times. This improvement is of significant importance in mobile devices considering their limitation of network bandwidth and wireless connectivity.
2021-06-28
Al Harbi, Saud, Halabi, Talal, Bellaiche, Martine.  2020.  Fog Computing Security Assessment for Device Authentication in the Internet of Things. 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1219–1224.
The Fog is an emergent computing architecture that will support the mobility and geographic distribution of Internet of Things (IoT) nodes and deliver context-aware applications with low latency to end-users. It forms an intermediate layer between IoT devices and the Cloud. However, Fog computing brings many requirements that increase the cost of security management. It inherits the security and trust issues of Cloud and acquires some of the vulnerable features of IoT that threaten data and application confidentiality, integrity, and availability. Several existing solutions address some of the security challenges following adequate adaptation, but others require new and innovative mechanisms. These reflect the need for a Fog architecture that provides secure access, efficient authentication, reliable and secure communication, and trust establishment among IoT devices and Fog nodes. The Fog might be more convenient to deploy decentralized authentication solutions for IoT than the Cloud if appropriately designed. In this short survey, we highlight the Fog security challenges related to IoT security requirements and architectural design. We conduct a comparative study of existing Fog architectures then perform a critical analysis of different authentication schemes in Fog computing, which confirms some of the fundamental requirements for effective authentication of IoT devices based on the Fog, such as decentralization, less resource consumption, and low latency.
2020-10-19
Engoulou, Richard Gilles, Bellaiche, Martine, Halabi, Talal, Pierre, Samuel.  2019.  A Decentralized Reputation Management System for Securing the Internet of Vehicles. 2019 International Conference on Computing, Networking and Communications (ICNC). :900–904.
The evolution of the Internet of Vehicles (IoV) paradigm has recently attracted a lot of researchers and industries. Vehicular Ad Hoc Networks (VANET) is the networking model that lies at the heart of this technology. It enables the vehicles to exchange relevant information concerning road conditions and safety. However, ensuring communication security has been and still is one of the main challenges to vehicles' interconnection. To secure the interconnected vehicular system, many cryptography techniques, communication protocols, and certification and reputation-based security approaches were proposed. Nonetheless, some limitations are still present, preventing the practical implementation of such approaches. In this paper, we first define a set of locally-perceived behavioral reputation parameters that enable a distributed evaluation of vehicles' reputation. Then, we integrate these parameters into the design of a reputation management system to exclude malicious or faulty vehicles from the IoV network. Our system can help in the prevention of several attacks on the VANET environment such as Sybil and Denial of Service attacks, and can be implemented in a fully decentralized fashion.
2020-02-17
Halabi, Talal, Bellaiche, Martine.  2019.  Security Risk-Aware Resource Provisioning Scheme for Cloud Computing Infrastructures. 2019 IEEE Conference on Communications and Network Security (CNS). :1–9.

The last decade has witnessed a growing interest in exploiting the advantages of Cloud Computing technology. However, the full migration of services and data to the Cloud is still cautious due to the lack of security assurance. Cloud Service Providers (CSPs)are urged to exert the necessary efforts to boost their reputation and improve their trustworthiness. Nevertheless, the uniform implementation of advanced security solutions across all their data centers is not the ideal solution, since customers' security requirements are usually not monolithic. In this paper, we aim at integrating the Cloud security risk into the process of resource provisioning to increase the security of Cloud data centers. First, we propose a quantitative security risk evaluation approach based on the definition of distinct security metrics and configurations adapted to the Cloud Computing environment. Then, the evaluated security risk levels are incorporated into a resource provisioning model in an InterCloud setting. Finally, we adopt two different metaheuristics approaches from the family of evolutionary computation to solve the security risk-aware resource provisioning problem. Simulations show that our model reduces the security risk within the Cloud infrastructure and demonstrate the efficiency and scalability of proposed solutions.