Biblio
Cyber-Physical Systems (CPSs), a class of complex intelligent systems, are considered the backbone of Industry 4.0. They aim to achieve large-scale, networked control of dynamical systems and processes such as electricity and gas distribution networks and deliver pervasive information services by combining state-of-the-art computing, communication, and control technologies. However, CPSs are often highly nonlinear and uncertain, and their intrinsic reliance on open communication platforms increases their vulnerability to security threats, which entails additional challenges to conventional control design approaches. Indeed, sensor measurements and control command signals, whose integrity plays a critical role in correct controller design, may be interrupted or falsely modified when broadcasted on wireless communication channels due to cyber attacks. This can have a catastrophic impact on CPS performance. In this paper, we first conduct a thorough analysis of recently developed secure and resilient control approaches leveraging the solid foundations of adaptive control theory to achieve security and resilience in networked CPSs against sensor and actuator attacks. Then, we discuss the limitations of current adaptive control strategies and present several future research directions in this field.
With billions of devices already connected to the network's edge, the Internet of Things (IoT) is shaping the future of pervasive computing. Nonetheless, IoT applications still cannot escape the need for the computing resources available at the fog layer. This becomes challenging since the fog nodes are not necessarily secure nor reliable, which widens even further the IoT threat surface. Moreover, the security risk appetite of heterogeneous IoT applications in different domains or deploy-ment contexts should not be assessed similarly. To respond to this challenge, this paper proposes a new approach to optimize the allocation of secure and reliable fog computing resources among IoT applications with varying security risk level. First, the security and reliability levels of fog nodes are quantitatively evaluated, and a security risk assessment methodology is defined for IoT services. Then, an online, incentive-compatible mechanism is designed to allocate secure fog resources to high-risk IoT offloading requests. Compared to the offline Vickrey auction, the proposed mechanism is computationally efficient and yields an acceptable approximation of the social welfare of IoT devices, allowing to attenuate security risk within the edge network.
Edge computing supports the deployment of ubiquitous, smart services by providing computing and storage closer to terminal devices. However, ensuring the full security and privacy of computations performed at the edge is challenging due to resource limitation. This paper responds to this challenge and proposes an adaptive approach to defense randomization among the edge data centers via a stochastic game, whose solution corresponds to the optimal security deployment at the network's edge. Moreover, security risk is evaluated subjectively based on Prospect Theory to reflect realistic scenarios where the attacker and the edge system do not similarly perceive the status of the infrastructure. The results show that a non-deterministic defense policy yields better security compared to a static defense strategy.
The last decade has witnessed a growing interest in exploiting the advantages of Cloud Computing technology. However, the full migration of services and data to the Cloud is still cautious due to the lack of security assurance. Cloud Service Providers (CSPs)are urged to exert the necessary efforts to boost their reputation and improve their trustworthiness. Nevertheless, the uniform implementation of advanced security solutions across all their data centers is not the ideal solution, since customers' security requirements are usually not monolithic. In this paper, we aim at integrating the Cloud security risk into the process of resource provisioning to increase the security of Cloud data centers. First, we propose a quantitative security risk evaluation approach based on the definition of distinct security metrics and configurations adapted to the Cloud Computing environment. Then, the evaluated security risk levels are incorporated into a resource provisioning model in an InterCloud setting. Finally, we adopt two different metaheuristics approaches from the family of evolutionary computation to solve the security risk-aware resource provisioning problem. Simulations show that our model reduces the security risk within the Cloud infrastructure and demonstrate the efficiency and scalability of proposed solutions.