Biblio

Filters: Author is Tychalas, Dimitrios  [Clear All Filters]
2022-09-20
Rajput, Prashant Hari Narayan, Sarkar, Esha, Tychalas, Dimitrios, Maniatakos, Michail.  2021.  Remote Non-Intrusive Malware Detection for PLCs based on Chain of Trust Rooted in Hardware. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :369—384.
Digitization has been rapidly integrated with manufacturing industries and critical infrastructure to increase efficiency, productivity, and reduce wastefulness, a transition being labeled as Industry 4.0. However, this expansion, coupled with the poor cybersecurity posture of these Industrial Internet of Things (IIoT) devices, has made them prolific targets for exploitation. Moreover, modern Programmable Logic Controllers (PLC) used in the Operational Technology (OT) sector are adopting open-source operating systems such as Linux instead of proprietary software, making such devices susceptible to Linux-based malware. Traditional malware detection approaches cannot be applied directly or extended to such environments due to the unique restrictions of these PLC devices, such as limited computational power and real-time requirements. In this paper, we propose ORRIS, a novel lightweight and out-of-the-device framework that detects malware at both kernel and user-level by processing the information collected using the Joint Test Action Group (JTAG) interface. We evaluate ORRIS against in-the-wild Linux malware achieving maximum detection accuracy of ≈99.7% with very few false-positive occurrences, a result comparable to the state-of-the-art commercial products. Moreover, we also develop and demonstrate a real-time implementation of ORRIS for commercial PLCs.
2021-08-17
Tychalas, Dimitrios, Maniatakos, Michail.  2020.  IFFSET: In-Field Fuzzing of Industrial Control Systems using System Emulation. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :662—665.
Industrial Control Systems (ICS) have evolved in the last decade, shifting from proprietary software/hardware to contemporary embedded architectures paired with open-source operating systems. In contrast to the IT world, where continuous updates and patches are expected, decommissioning always-on ICS for security assessment can incur prohibitive costs to their owner. Thus, a solution for routinely assessing the cybersecurity posture of diverse ICS without affecting their operation is essential. Therefore, in this paper we introduce IFFSET, a platform that leverages full system emulation of Linux-based ICS firmware and utilizes fuzzing for security evaluation. Our platform extracts the file system and kernel information from a live ICS device, building an image which is emulated on a desktop system through QEMU. We employ fuzzing as a security assessment tool to analyze ICS specific libraries and find potential security threatening conditions. We test our platform with commercial PLCs, showcasing potential threats with no interruption to the control process.
2020-02-26
Tychalas, Dimitrios, Keliris, Anastasis, Maniatakos, Michail.  2019.  LED Alert: Supply Chain Threats for Stealthy Data Exfiltration in Industrial Control Systems. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :194–199.

Industrial Internet-of-Things has been touted as the next revolution in the industrial domain, offering interconnectivity, independence, real-time operation, and self-optimization. Integration of smart systems, however, bridges the gap between information and operation technology, creating new avenues for attacks from the cyber domain. The dismantling of this air-gap, in conjunction with the devices' long lifespan -in the range of 20-30 years-, motivates us to bring the attention of the community to emerging advanced persistent threats. We demonstrate a threat that bridges the air-gap by leaking data from memory to analog peripherals through Direct Memory Access (DMA), delivered as a firmware modification through the supply chain. The attack automatically adapts to a target device by leveraging the Device Tree and resides solely in the peripherals, completely transparent to the main CPU, by judiciously short-circuiting specific components. We implement this attack on a commercial Programmable Logic Controller, leaking information over the available LEDs. We evaluate the presented attack vector in terms of stealthiness, and demonstrate no observable overhead on both CPU performance and DMA transfer speed. Since traditional anomaly detection techniques would fail to detect this firmware trojan, this work highlights the need for industrial control system-appropriate techniques that can be applied promptly to installed devices.