Biblio

Filters: Author is Park, Soo-Hyun  [Clear All Filters]
2022-05-06
Kalyani, Muppalla, Park, Soo-Hyun.  2021.  Ontology based routing path selection mechanism for underwater Internet of Things. 2021 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). :1—5.
Based on the success of terrestrial Internet of Things (IoT), research has started on Underwater IoT (UIoT). The UIoT describes global network of connected underwater things that interact with water environment and communicate with terrestrial network through the underwater communication technologies. For UIoT device, it is important to choose the channel before transmission. This paper deals with UIoT communication technologies and ontology based path selection mechanism for UIoT.
2020-03-02
Ko, Eunbi, M, Delphin Raj K, Yum, Sun-Ho, Shin, Soo-Young, Namgung, Jung-Il, Park, Soo-Hyun.  2019.  Selection Mechanism for Underwater Multi-Media Communication. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :130–132.
As the ocean covers 70% of the Earth's surface, it becomes inevitable to develop or extend underwater applications. Compared to Visible Light medium, Acoustic medium has been widely used to transmit the data from source to destination in underwater communication. Data transmission, however, has the limitation such as propagation delay, reliability, power constraints, etc. Although underwater MAC protocols have been developed to overcome these challenges, there are still some drawbacks due to the harsh underwater environment. Therefore, the selection mechanism for underwater multi-media communication is proposed inside Medium Access Control (MAC) layer. In this paper, the main focus is to select the appropriate medium based on the distance between nodes and transmission power. The result of performance evaluation shows that this multimedia approach can complement the existing underwater single medium communication. As a result, underwater multimedia mechanism increases the reliability and energy efficiency in data transmission.