Biblio

Filters: Author is Wu, Jiajing  [Clear All Filters]
2022-05-03
Ma, Weijun, Fang, Junyuan, Wu, Jiajing.  2021.  Sequential Node Attack of Complex Networks Based on Q-Learning Method. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1—5.

The security issue of complex network systems, such as communication systems and power grids, has attracted increasing attention due to cascading failure threats. Many existing studies have investigated the robustness of complex networks against cascading failure from an attacker's perspective. However, most of them focus on the synchronous attack in which the network components under attack are removed synchronously rather than in a sequential fashion. Most recent pioneering work on sequential attack designs the attack strategies based on simple heuristics like degree and load information, which may ignore the inside functions of nodes. In the paper, we exploit a reinforcement learning-based sequential attack method to investigate the impact of different nodes on cascading failure. Besides, a candidate pool strategy is proposed to improve the performance of the reinforcement learning method. Simulation results on Barabási-Albert scale-free networks and real-world networks have demonstrated the superiority and effectiveness of the proposed method.

2020-03-02
Zhang, Yihan, Wu, Jiajing, Chen, Zhenhao, Huang, Yuxuan, Zheng, Zibin.  2019.  Sequential Node/Link Recovery Strategy of Power Grids Based on Q-Learning Approach. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

Cascading failure, which can be triggered by both physical and cyber attacks, is among the most critical threats to the security and resilience of power grids. In current literature, researchers investigate the issue of cascading failure on smart grids mainly from the attacker's perspective. From the perspective of a grid defender or operator, however, it is also an important issue to restore the smart grid suffering from cascading failure back to normal operation as soon as possible. In this paper, we consider cascading failure in conjunction with the restoration process involving repairing of the failed nodes/links in a sequential fashion. Based on a realistic power flow cascading failure model, we exploit a Q-learning approach to develop a practical and effective policy to identify the optimal way of sequential restorations for large-scale smart grids. Simulation results on three power grid test benchmarks demonstrate the learning ability and the effectiveness of the proposed strategy.