Biblio

Filters: Author is Wang, Lina  [Clear All Filters]
2023-02-17
Luo, Zhengwu, Wang, Lina, Wang, Run, Yang, Kang, Ye, Aoshuang.  2022.  Improving Robustness Verification of Neural Networks with General Activation Functions via Branching and Optimization. 2022 International Joint Conference on Neural Networks (IJCNN). :1–8.
Robustness verification of neural networks (NNs) is a challenging and significant problem, which draws great attention in recent years. Existing researches have shown that bound propagation is a scalable and effective method for robustness verification, and it can be implemented on GPUs and TPUs to get parallelized. However, the bound propagation methods naturally produce weak bound due to linear relaxations on the neurons, which may cause failure in verification. Although tightening techniques for simple ReLU networks have been explored, they are not applicable for NNs with general activation functions such as Sigmoid and Tanh. Improving robustness verification on these NNs is still challenging. In this paper, we propose a Branch-and-Bound (BaB) style method to address this problem. The proposed BaB procedure improves the weak bound by splitting the input domain of neurons into sub-domains and solving the corresponding sub-problems. We propose a generic heuristic function to determine the priority of neuron splitting by scoring the relaxation and impact of neurons. Moreover, we combine bound optimization with the BaB procedure to improve the weak bound. Experimental results demonstrate that the proposed method gains up to 35% improvement compared to the state-of-art CROWN method on Sigmoid and Tanh networks.
ISSN: 2161-4407
2020-07-13
Li, Tao, Ren, Yongzhen, Ren, Yongjun, Wang, Lina, Wang, Lingyun, Wang, Lei.  2019.  NMF-Based Privacy-Preserving Collaborative Filtering on Cloud Computing. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :476–481.
The security of user personal information on cloud computing is an important issue for the recommendation system. In order to provide high quality recommendation services, privacy of user is often obtained by untrusted recommendation systems. At the same time, malicious attacks often use the recommendation results to try to guess the private data of user. This paper proposes a hybrid algorithm based on NMF and random perturbation technology, which implements the recommendation system and solves the protection problem of user privacy data in the recommendation process on cloud computing. Compared with the privacy protection algorithm of SVD, the elements of the matrix after the decomposition of the new algorithm are non-negative elements, avoiding the meaninglessness of negative numbers in the matrix formed by texts, images, etc., and it has a good explanation for the local characteristics of things. Experiments show that the new algorithm can produce recommendation results with certain accuracy under the premise of protecting users' personal privacy on cloud computing.
2020-03-09
Zhai, Liming, Wang, Lina, Ren, Yanzhen.  2019.  Multi-domain Embedding Strategies for Video Steganography by Combining Partition Modes and Motion Vectors. 2019 IEEE International Conference on Multimedia and Expo (ICME). :1402–1407.
Digital video has various types of entities, which are utilized as embedding domains to hide messages in steganography. However, nearly all video steganography uses only one type of embedding domain, resulting in limited embedding capacity and potential security risks. In this paper, we firstly propose to embed in multi-domains for video steganography by combining partition modes (PMs) and motion vectors (MVs). The multi-domain embedding (MDE) aims to spread the modifications to different embedding domains for achieving higher undetectability. The key issue of MDE is the interactions of entities across domains. To this end, we design two MDE strategies, which hide data in PM domain and MV domain by sequential embedding and simultaneous embedding respectively. These two strategies can be applied to existing steganography within a distortion-minimization framework. Experiments show that the MDE strategies achieve a significant improvement in security performance against targeted steganalysis and fusion based steganalysis.
2020-10-30
Xu, Lai, Yu, Rongwei, Wang, Lina, Liu, Weijie.  2019.  Memway: in-memorywaylaying acceleration for practical rowhammer attacks against binaries. Tsinghua Science and Technology. 24:535—545.

The Rowhammer bug is a novel micro-architectural security threat, enabling powerful privilege-escalation attacks on various mainstream platforms. It works by actively flipping bits in Dynamic Random Access Memory (DRAM) cells with unprivileged instructions. In order to set up Rowhammer against binaries in the Linux page cache, the Waylaying algorithm has previously been proposed. The Waylaying method stealthily relocates binaries onto exploitable physical addresses without exhausting system memory. However, the proof-of-concept Waylaying algorithm can be easily detected during page cache eviction because of its high disk I/O overhead and long running time. This paper proposes the more advanced Memway algorithm, which improves on Waylaying in terms of both I/O overhead and speed. Running time and disk I/O overhead are reduced by 90% by utilizing Linux tmpfs and inmemory swapping to manage eviction files. Furthermore, by combining Memway with the unprivileged posix fadvise API, the binary relocation step is made 100 times faster. Equipped with our Memway+fadvise relocation scheme, we demonstrate practical Rowhammer attacks that take only 15-200 minutes to covertly relocate a victim binary, and less than 3 seconds to flip the target instruction bit.