Biblio

Filters: Author is Bosio, Alberto  [Clear All Filters]
2021-05-25
Bosio, Alberto, Canal, Ramon, Di Carlo, Stefano, Gizopoulos, Dimitris, Savino, Alessandro.  2020.  Cross-Layer Soft-Error Resilience Analysis of Computing Systems. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :79—79.
In a world with computation at the epicenter of every activity, computing systems must be highly resilient to errors even if miniaturization makes the underlying hardware unreliable. Techniques able to guarantee high reliability are associated to high costs. Early resilience analysis has the potential to support informed design decisions to maximize system-level reliability while minimizing the associated costs. This tutorial focuses on early cross-layer (hardware and software) resilience analysis considering the full computing continuum (from IoT/CPS to HPC applications) with emphasis on soft errors.
2020-03-09
Portolan, Michele, Savino, Alessandro, Leveugle, Regis, Di Carlo, Stefano, Bosio, Alberto, Di Natale, Giorgio.  2019.  Alternatives to Fault Injections for Early Safety/Security Evaluations. 2019 IEEE European Test Symposium (ETS). :1–10.
Functional Safety standards like ISO 26262 require a detailed analysis of the dependability of components subjected to perturbations. Radiation testing or even much more abstract RTL fault injection campaigns are costly and complex to set up especially for SoCs and Cyber Physical Systems (CPSs) comprising intertwined hardware and software. Moreover, some approaches are only applicable at the very end of the development cycle, making potential iterations difficult when market pressure and cost reduction are paramount. In this tutorial, we present a summary of classical state-of-the-art approaches, then alternative approaches for the dependability analysis that can give an early yet accurate estimation of the safety or security characteristics of HW-SW systems. Designers can rely on these tools to identify issues in their design to be addressed by protection mechanisms, ensuring that system dependability constraints are met with limited risk when subjected later to usual fault injections and to e.g., radiation testing or laser attacks for certification.