Babay, Amy, Tantillo, Thomas, Aron, Trevor, Platania, Marco, Amir, Yair.
2018.
Network-Attack-Resilient Intrusion-Tolerant SCADA for the Power Grid. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :255–266.
As key components of the power grid infrastructure, Supervisory Control and Data Acquisition (SCADA) systems are likely to be targeted by nation-state-level attackers willing to invest considerable resources to disrupt the power grid. We present Spire, the first intrusion-tolerant SCADA system that is resilient to both system-level compromises and sophisticated network-level attacks and compromises. We develop a novel architecture that distributes the SCADA system management across three or more active sites to ensure continuous availability in the presence of simultaneous intrusions and network attacks. A wide-area deployment of Spire, using two control centers and two data centers spanning 250 miles, delivered nearly 99.999% of all SCADA updates initiated over a 30-hour period within 100ms. This demonstrates that Spire can meet the latency requirements of SCADA for the power grid.
Babay, Amy, Schultz, John, Tantillo, Thomas, Amir, Yair.
2018.
Toward an Intrusion-Tolerant Power Grid: Challenges and Opportunities. 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). :1321–1326.
While cyberattacks pose a relatively new challenge for power grid control systems, commercial cloud systems have needed to address similar threats for many years. However, technology and approaches developed for cloud systems do not necessarily transfer directly to the power grid, due to important differences between the two domains. We discuss our experience adapting intrusion-tolerant cloud technologies to the power domain and describe the challenges we have encountered and potential directions for overcoming those obstacles.