Biblio

Filters: Author is Bai, Yude  [Clear All Filters]
2022-04-18
Yuan, Liu, Bai, Yude, Xing, Zhenchang, Chen, Sen, Li, Xiaohong, Deng, Zhidong.  2021.  Predicting Entity Relations across Different Security Databases by Using Graph Attention Network. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :834–843.
Security databases such as Common Vulnerabilities and Exposures (CVE), Common Weakness Enumeration (CWE), and Common Attack Pattern Enumeration and Classification (CAPEC) maintain diverse high-quality security concepts, which are treated as security entities. Meanwhile, security entities are documented with many potential relation types that profit for security analysis and comprehension across these three popular databases. To support reasoning security entity relationships, translation-based knowledge graph representation learning treats each triple independently for the entity prediction. However, it neglects the important semantic information about the neighbor entities around the triples. To address it, we propose a text-enhanced graph attention network model (text-enhanced GAT). This model highlights the importance of the knowledge in the 2-hop neighbors surrounding a triple, under the observation of the diversity of each entity. Thus, we can capture more structural and textual information from the knowledge graph about the security databases. Extensive experiments are designed to evaluate the effectiveness of our proposed model on the prediction of security entity relationships. Moreover, the experimental results outperform the state-of-the-art by Mean Reciprocal Rank (MRR) 0.132 for detecting the missing relationships.
2020-03-23
Xu, Yilin, Ge, Weimin, Li, Xiaohong, Feng, Zhiyong, Xie, Xiaofei, Bai, Yude.  2019.  A Co-Occurrence Recommendation Model of Software Security Requirement. 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE). :41–48.
To guarantee the quality of software, specifying security requirements (SRs) is essential for developing systems, especially for security-critical software systems. However, using security threat to determine detailed SR is quite difficult according to Common Criteria (CC), which is too confusing and technical for non-security specialists. In this paper, we propose a Co-occurrence Recommend Model (CoRM) to automatically recommend software SRs. In this model, the security threats of product are extracted from security target documents of software, in which the related security requirements are tagged. In order to establish relationships between software security threat and security requirement, semantic similarities between different security threat is calculated by Skip-thoughts Model. To evaluate our CoRM model, over 1000 security target documents of 9 types software products are exploited. The results suggest that building a CoRM model via semantic similarity is feasible and reliable.