Biblio

Filters: Author is Pennekamp, Jan  [Clear All Filters]
2023-01-05
Wagner, Eric, Matzutt, Roman, Pennekamp, Jan, Bader, Lennart, Bajelidze, Irakli, Wehrle, Klaus, Henze, Martin.  2022.  Scalable and Privacy-Focused Company-Centric Supply Chain Management. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
Blockchain technology promises to overcome trust and privacy concerns inherent to centralized information sharing. However, current decentralized supply chain management systems do either not meet privacy and scalability requirements or require a trustworthy consortium, which is challenging for increasingly dynamic supply chains with constantly changing participants. In this paper, we propose CCChain, a scalable and privacy-aware supply chain management system that stores all information locally to give companies complete sovereignty over who accesses their data. Still, tamper protection of all data through a permissionless blockchain enables on-demand tracking and tracing of products as well as reliable information sharing while affording the detection of data inconsistencies. Our evaluation confirms that CCChain offers superior scalability in comparison to alternatives while also enabling near real-time tracking and tracing for many, less complex products.
2022-09-09
Pennekamp, Jan, Alder, Fritz, Matzutt, Roman, Mühlberg, Jan Tobias, Piessens, Frank, Wehrle, Klaus.  2020.  Secure End-to-End Sensing in Supply Chains. 2020 IEEE Conference on Communications and Network Security (CNS). :1—6.
Trust along digitalized supply chains is challenged by the aspect that monitoring equipment may not be trustworthy or unreliable as respective measurements originate from potentially untrusted parties. To allow for dynamic relationships along supply chains, we propose a blockchain-backed supply chain monitoring architecture relying on trusted hardware. Our design provides a notion of secure end-to-end sensing of interactions even when originating from untrusted surroundings. Due to attested checkpointing, we can identify misinformation early on and reliably pinpoint the origin. A blockchain enables long-term verifiability for all (now trustworthy) IoT data within our system even if issues are detected only after the fact. Our feasibility study and cost analysis further show that our design is indeed deployable in and applicable to today’s supply chain settings.
2020-03-23
Hiller, Jens, Pennekamp, Jan, Dahlmanns, Markus, Henze, Martin, Panchenko, Andriy, Wehrle, Klaus.  2019.  Tailoring Onion Routing to the Internet of Things: Security and Privacy in Untrusted Environments. 2019 IEEE 27th International Conference on Network Protocols (ICNP). :1–12.
An increasing number of IoT scenarios involve mobile, resource-constrained IoT devices that rely on untrusted networks for Internet connectivity. In such environments, attackers can derive sensitive private information of IoT device owners, e.g., daily routines or secret supply chain procedures, when sniffing on IoT communication and linking IoT devices and owner. Furthermore, untrusted networks do not provide IoT devices with any protection against attacks from the Internet. Anonymous communication using onion routing provides a well-proven mechanism to keep the relationship between communication partners secret and (optionally) protect against network attacks. However, the application of onion routing is challenged by protocol incompatibilities and demanding cryptographic processing on constrained IoT devices, rendering its use infeasible. To close this gap, we tailor onion routing to the IoT by bridging protocol incompatibilities and offloading expensive cryptographic processing to a router or web server of the IoT device owner. Thus, we realize resource-conserving access control and end-to-end security for IoT devices. To prove applicability, we deploy onion routing for the IoT within the well-established Tor network enabling IoT devices to leverage its resources to achieve the same grade of anonymity as readily available to traditional devices.