Biblio

Filters: Author is Walker, Aaron  [Clear All Filters]
2021-09-21
Walker, Aaron, Sengupta, Shamik.  2020.  Malware Family Fingerprinting Through Behavioral Analysis. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–5.
Signature-based malware detection is not always effective at detecting polymorphic variants of known malware. Malware signatures are devised to counter known threats, which also limits efficacy against new forms of malware. However, existing signatures do present the ability to classify malware based upon known malicious behavior which occurs on a victim computer. In this paper we present a method of classifying malware by family type through behavioral analysis, where the frequency of system function calls is used to fingerprint the actions of specific malware families. This in turn allows us to demonstrate a machine learning classifier which is capable of distinguishing malware by family affiliation with high accuracy.
2020-10-26
Walker, Aaron, Sengupta, Shamik.  2019.  Insights into Malware Detection via Behavioral Frequency Analysis Using Machine Learning. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
The most common defenses against malware threats involves the use of signatures derived from instances of known malware. However, the constant evolution of the malware threat landscape necessitates defense against unknown malware, making a signature catalog of known threats insufficient to prevent zero-day vulnerabilities from being exploited. Recent research has applied machine learning approaches to identify malware through artifacts of malicious activity as observed through dynamic behavioral analysis. We have seen that these approaches mimic common malware defenses by simply offering a method of detecting known malware. We contribute a new method of identifying software as malicious or benign through analysis of the frequency of Windows API system function calls. We show that this is a powerful technique for malware detection because it generates learning models which understand the difference between malicious and benign software, rather than producing a malware signature classifier. We contribute a method of systematically comparing machine learning models against different datasets to determine their efficacy in accurately distinguishing the difference between malicious and benign software.
2020-03-27
Walker, Aaron, Amjad, Muhammad Faisal, Sengupta, Shamik.  2019.  Cuckoo’s Malware Threat Scoring and Classification: Friend or Foe? 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0678–0684.
Malware threat classification involves understanding the behavior of the malicious software and how it affects a victim host system. Classifying threats allows for measured response appropriate to the risk involved. Malware incident response depends on many automated tools for the classification of threat to help identify the appropriate reaction to a threat alert. Cuckoo Sandbox is one such tool which can be used for automated analysis of malware and one method of threat classification provided is a threat score. A security analyst might submit a suspicious file to Cuckoo for analysis to determine whether or not the file contains malware or performs potentially malicious behavior on a system. Cuckoo is capable of producing a report of this behavior and ranks the severity of the observed actions as a score from one to ten, with ten being the most severe. As such, a malware sample classified as an 8 would likely take priority over a sample classified as a 3. Unfortunately, this scoring classification can be misleading due to the underlying methodology of severity classification. In this paper we demonstrate why the current methodology of threat scoring is flawed and therefore we believe it can be improved with greater emphasis on analyzing the behavior of the malware. This allows for a threat classification rating which scales with the risk involved in the malware behavior.