Biblio

Filters: Author is Wijesekera, Primal  [Clear All Filters]
2020-03-31
Wijesekera, Primal.  2018.  Contextual permission models for better privacy protection. Electronic Theses and Dissertations (ETDs) 2008+.

Despite corporate cyber intrusions attracting all the attention, privacy breaches that we, as ordinary users, should be worried about occur every day without any scrutiny. Smartphones, a household item, have inadvertently become a major enabler of privacy breaches. Smartphone platforms use permission systems to regulate access to sensitive resources. These permission systems, however, lack the ability to understand users’ privacy expectations leaving a significant gap between how permission models behave and how users would want the platform to protect their sensitive data. This dissertation provides an in-depth analysis of how users make privacy decisions in the context of Smartphones and how platforms can accommodate user’s privacy requirements systematically. We first performed a 36-person field study to quantify how often applications access protected resources when users are not expecting it. We found that when the application requesting the permission is running invisibly to the user, they are more likely to deny applications access to protected resources. At least 80% of our participants would have preferred to prevent at least one permission request. To explore the feasibility of predicting user’s privacy decisions based on their past decisions, we performed a longitudinal 131-person field study. Based on the data, we built a classifier to make privacy decisions on the user’s behalf by detecting when the context has changed and inferring privacy preferences based on the user’s past decisions. We showed that our approach can accurately predict users’ privacy decisions 96.8% of the time, which is an 80% reduction in error rate compared to current systems. Based on these findings, we developed a custom Android version with a contextually aware permission model. The new model guards resources based on user’s past decisions under similar contextual circumstances. We performed a 38-person field study to measure the efficiency and usability of the new permission model. Based on exit interviews and 5M data points, we found that the new system is effective in reducing the potential violations by 75%. Despite being significantly more restrictive over the default permission systems, participants did not find the new model to cause any usability issues in terms of application functionality.

Reyes, Irwin, Wijesekera, Primal, Reardon, Joel, Elazari, Amit, Razaghpanah, Abbas, Vallina-Rodriguez, Narseo, Egelman, Serge.  2018.  “Won’t Somebody Think of the Children?” Examining COPPA Compliance at Scale Proceedings on Privacy Enhancing Technologies. 2018:63-83.

We present a scalable dynamic analysis framework that allows for the automatic evaluation of the privacy behaviors of Android apps. We use our system to analyze mobile apps’ compliance with the Children’s Online Privacy Protection Act (COPPA), one of the few stringent privacy laws in the U.S. Based on our automated analysis of 5,855 of the most popular free children’s apps, we found that a majority are potentially in violation of COPPA, mainly due to their use of thirdparty SDKs. While many of these SDKs offer configuration options to respect COPPA by disabling tracking and behavioral advertising, our data suggest that a majority of apps either do not make use of these options or incorrectly propagate them across mediation SDKs. Worse, we observed that 19% of children’s apps collect identifiers or other personally identifiable information (PII) via SDKs whose terms of service outright prohibit their use in child-directed apps. Finally, we show that efforts by Google to limit tracking through the use of a resettable advertising ID have had little success: of the 3,454 apps that share the resettable ID with advertisers, 66% transmit other, non-resettable, persistent identifiers as well, negating any intended privacy-preserving properties of the advertising ID.