Biblio

Filters: Author is Zhang, Min  [Clear All Filters]
2023-01-06
Wang, Yingjue, Gong, Lei, Zhang, Min.  2022.  Remote Disaster Recovery and Backup of Rehabilitation Medical Archives Information System Construction under the Background of Big Data. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). :575—578.
Realize the same-city and remote disaster recovery of the infectious disease network direct reporting system of the China Medical Archives Information Center. Method: A three-tier B/S/DBMS architecture is used in the disaster recovery center to deploy an infectious disease network direct reporting system, and realize data-level disaster recovery through remote replication technology; realize application-level disaster recovery of key business systems through asynchronous data technology; through asynchronous the mode carries on the network direct report system disaster tolerance data transmission of medical files. The establishment of disaster recovery centers in different cities in the same city ensures the direct reporting system and data security of infectious diseases, and ensures the effective progress of continuity work. The results show that the efficiency of remote disaster recovery and backup based on big data has increased by 9.2%
2020-04-17
Huang, Hua, Zhang, Yi-lai, Zhang, Min.  2019.  Research on Cloud Workflow Engine Supporting Three-Level Isolation and Privacy Protection. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :160—165.

With the development of cloud computing, cloud workflow systems are widely accepted by more and more enterprises and individuals (namely tenants). There exists mass tenant workflow instances running in cloud workflow systems. How to implement the three-level (i.e., data, performance, execution ) isolation and privacy protection among these tenant workflow instances is challenging. To address this issue, this paper presents a novel cloud workflow model supporting multi-tenants with privacy protection. With the presented model, a framework of cloud workflow engine based on the extended jBPM4 is proposed by adopting layered management thought, virtualization technology and sandbox mechanism. By extending the jBPM4 (java Business Process Management) engine, the prototype system of the proposed cloud workflow engine is implemented and applied in the ceramic cloud service platform (denoted as CCSP). The application effect demonstrates that our proposal can be used to implement the three-level isolation and privacy protection between mass various tenant workflow instances in cloud workflow systems.