Biblio

Filters: Author is Zhang, Meng  [Clear All Filters]
2022-11-18
Li, Shuang, Zhang, Meng, Li, Che, Zhou, Yue, Wang, Kanghui, Deng, Yaru.  2021.  Mobile APP Personal Information Security Detection and Analysis. 2021 IEEE/ACIS 19th International Conference on Computer and Information Science (ICIS). :82—87.
Privacy protection is a vital part of information security. However, the excessive collections and uses of personal information have intensified in the area of mobile apps (applications). To comprehend the current situation of APP personal information security problem of APP, this paper uses a combined approach of static analysis technology, dynamic analysis technology, and manual review to detect and analyze the installed file of mobile apps. 40 mobile apps are detected as experimental samples. The results demonstrate that this combined approach can effectively detect various issues of personal information security problem in mobile apps. Statistics analysis of the experimental results demonstrate that mobile apps have outstanding problems in some aspects of personal information security such as privacy policy, permission application, information collection, data storage, etc.
2020-05-04
Zhang, Meng, Shen, Chao, Han, Sicong.  2019.  A Compensation Control Scheme against DoS Attack for Nonlinear Cyber-Physical Systems. 2019 Chinese Control Conference (CCC). :144–149.

This paper proposes a compensation control scheme against DoS attack for nonlinear cyber-physical systems (CPSs). The dynamical process of the nonlinear CPSs are described by T-S fuzzy model that regulated by the corresponding fuzzy rules. The communication link between the controller and the actuator under consideration may be unreliable, where Denialof-Service (DoS) attack is supposed to invade the communication link randomly. To compensate the negative effect caused by DoS attack, a compensation control scheme is designed to maintain the stability of the closed-loop system. With the aid of the Lyapunov function theory, a sufficient condition is established to ensure the stochastic stability and strict dissipativity of the closed-loop system. Finally, an iterative linearization algorithm is designed to determine the controller gain and the effectiveness of the proposed approach is evaluated through simulations.

2020-05-15
Wang, Jihe, Zhang, Meng, Qiu, Meikang.  2018.  A Diffusional Schedule for Traffic Reducing on Network-on-Chip. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :206—210.
pubcrawl, Network on Chip Security, Scalability, resiliency, resilience, metrics, Tasks on NoC (Network-on-Chip) are less efficient because of long-distance data synchronization. An inefficient task schedule strategy can lead to a large number of remote data accessing that ruins the speedup of parallel execution of multiple tasks. Thus, we propose an energy efficient task schedule to reduce task traffic with a diffusional pattern. The task mapping algorithm can optimize traffic distribution by limit tasks into a small area to reduce NoC activities. Comparing to application-layer optimization, our task mapping can obtain 20% energy saving and 15% latency reduction on average.