Biblio

Filters: Author is Li, Na  [Clear All Filters]
2022-10-03
Sun, Yang, Li, Na, Tao, Xiaofeng.  2021.  Privacy Preserved Secure Offloading in the Multi-access Edge Computing Network. 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). :1–6.
Mobile edge computing (MEC) emerges recently to help process the computation-intensive and delay-sensitive applications of resource limited mobile devices in support of MEC servers. Due to the wireless offloading, MEC faces many security challenges, like eavesdropping and privacy leakage. The anti-eavesdropping offloading or privacy preserving offloading have been studied in existing researches. However, both eavesdropping and privacy leakage may happen in the meantime in practice. In this paper, we propose a privacy preserved secure offloading scheme aiming to minimize the energy consumption, where the location privacy, usage pattern privacy and secure transmission against the eavesdropper are jointly considered. We formulate this problem as a constrained Markov decision process (CMDP) with the constraints of secure offloading rate and pre-specified privacy level, and solve it with reinforcement learning (RL). It can be concluded from the simulation that this scheme can save the energy consumption as well as improve the privacy level and security of the mobile device compared with the benchmark scheme.
2022-06-10
Poon, Lex, Farshidi, Siamak, Li, Na, Zhao, Zhiming.  2021.  Unsupervised Anomaly Detection in Data Quality Control. 2021 IEEE International Conference on Big Data (Big Data). :2327–2336.
Data is one of the most valuable assets of an organization and has a tremendous impact on its long-term success and decision-making processes. Typically, organizational data error and outlier detection processes perform manually and reactively, making them time-consuming and prone to human errors. Additionally, rich data types, unlabeled data, and increased volume have made such data more complex. Accordingly, an automated anomaly detection approach is required to improve data management and quality control processes. This study introduces an unsupervised anomaly detection approach based on models comparison, consensus learning, and a combination of rules of thumb with iterative hyper-parameter tuning to increase data quality. Furthermore, a domain expert is considered a human in the loop to evaluate and check the data quality and to judge the output of the unsupervised model. An experiment has been conducted to assess the proposed approach in the context of a case study. The experiment results confirm that the proposed approach can improve the quality of organizational data and facilitate anomaly detection processes.
2020-06-02
Gong, Shixun, Li, Na, Wu, Huici, Tao, Xiaofeng.  2019.  Cooperative Two-Key Generation in Source-Type Model With Partial-Trusted Helpers. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :689—694.

This paper investigates the problem of generating two secret keys (SKs) simultaneously over a five-terminal system with terminals labelled as 1, 2, 3, 4 and 5. Each of terminal 2 and terminal 3 wishes to generate an SK with terminal 1 over a public channel wiretapped by a passive eavesdropper. Terminal 4 and terminal 5 respectively act as a trusted helper and an untrusted helper to assist the SK generation. All the terminals observe correlated source sequences from discrete memoryless sources (DMS) and can exchange information over a public channel with no rate constraint that the eavesdropper has access to. Based on the considered model, key capacity region is fully characterized and a source coding scheme that can achieve the capacity region is provided. Furthermore, expression for key leakage rate is obtained to analyze the security performance of the two generated keys.