Biblio

Filters: Author is Awin, Faroq  [Clear All Filters]
2020-06-19
Eziama, Elvin, Ahmed, Saneeha, Ahmed, Sabbir, Awin, Faroq, Tepe, Kemal.  2019.  Detection of Adversary Nodes in Machine-To-Machine Communication Using Machine Learning Based Trust Model. 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). :1—6.

Security challenges present in Machine-to-Machine Communication (M2M-C) and big data paradigm are fundamentally different from conventional network security challenges. In M2M-C paradigms, “Trust” is a vital constituent of security solutions that address security threats and for such solutions,it is important to quantify and evaluate the amount of trust in the information and its source. In this work, we focus on Machine Learning (ML) Based Trust (MLBT) evaluation model for detecting malicious activities in a vehicular Based M2M-C (VBM2M-C) network. In particular, we present an Entropy Based Feature Engineering (EBFE) coupled Extreme Gradient Boosting (XGBoost) model which is optimized with Binary Particle Swarm optimization technique. Based on three performance metrics, i.e., Accuracy Rate (AR), True Positive Rate (TPR), False Positive Rate (FPR), the effectiveness of the proposed method is evaluated in comparison to the state-of-the-art ensemble models, such as XGBoost and Random Forest. The simulation results demonstrates the superiority of the proposed model with approximately 10% improvement in accuracy, TPR and FPR, with reference to the attacker density of 30% compared with the start-of-the-art algorithms.