Biblio

Filters: Author is Karmakar, Abhijit  [Clear All Filters]
2022-05-05
Gaikwad, Bipin, Prakash, PVBSS, Karmakar, Abhijit.  2021.  Edge-based real-time face logging system for security applications. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—6.
In this work, we have proposed a state-of-the-art face logging system that detects and logs high quality cropped face images of the people in real-time for security applications. Multiple strategies based on resolution, velocity and symmetry of faces have been applied to obtain best quality face images. The proposed system handles the issue of motion blur in the face images by determining the velocities of the detections. The output of the system is the face database, where four faces for each detected person are stored along with the time stamp and ID number tagged to it. The facial features are extracted by our system, which are used to search the person-of-interest instantly. The proposed system has been implemented in a docker container environment on two edge devices: the powerful NVIDIA Jetson TX2 and the cheaper NVIDIA Jetson N ano. The light and fast face detector (LFFD) used for detection, and ResN et50 used for facial feature extraction are optimized using TensorRT over these edge devices. In our experiments, the proposed system achieves the True Acceptance Rate (TAR) of 0.94 at False Acceptance Rate (FAR) of 0.01 while detecting the faces at 20–30 FPS on NVIDIA Jetson TX2 and about 8–10 FPS on NVIDIA Jetson N ano device. The advantage of our system is that it is easily deployable at multiple locations and also scalable based on application requirement. Thus it provides a realistic solution to face logging application as the query or suspect can be searched instantly, which may not only help in investigation of incidents but also in prevention of untoward incidents.
2020-06-26
Pandey, Jai Gopal, Mitharwal, Chhavi, Karmakar, Abhijit.  2019.  An RNS Implementation of the Elliptic Curve Cryptography for IoT Security. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :66—72.

Public key cryptography plays a vital role in many information and communication systems for secure data transaction, authentication, identification, digital signature, and key management purpose. Elliptic curve cryptography (ECC) is a widely used public key cryptographic algorithm. In this paper, we propose a hardware-software codesign implementation of the ECC cipher. The algorithm is modelled in C language. Compute-intensive components are identified for their efficient hardware implementations. In the implementation, residue number system (RNS) with projective coordinates are utilized for performing the required arithmetic operations. To manage the hardware-software codeign in an integrated fashion Xilinx platform studio tool and Virtex-5 xc5vfx70t device based platform is utilized. An application of the implementation is demonstrated for encryption of text and its respective decryption over prime fields. The design is useful for providing an adequate level of security for IoTs.