Biblio

Filters: Author is Sari, Christy Atika  [Clear All Filters]
2020-06-26
Putro, Singgih Nugroho, Moses Setiadi, De Rosal Ignatius, Aini, Devita Nurul, Rachmawanto, Eko Hari, Sari, Christy Atika.  2019.  Improved CRT Image Steganography based on Edge Areas and Spread Embedding. 2019 Fourth International Conference on Informatics and Computing (ICIC). :1—6.

Chinese Remainder Theorem (CRT) is one of the spatial domain methods that is more implemented in the data hiding method watermarking. CRT is used to improve security and imperceptibility in the watermarking method. CRT is rarely studied in studies that discuss steganographic images. Steganography research focuses more on increasing imperceptibility, embedded payload, and message security, so methods like LSB are still popular to be developed to date. CRT and LSB have some similarities such as default payload capacity and both are methods in the spatial domain which can produce good imperceptibility quality of stego image. But CRT is very superior in terms of security, so CRT is also widely used in cryptographic algorithms. Some ways to increase imperceptibility in image steganography are edge detection and spread spectrum embedding. This research proposes a combination of edge detection techniques and spread-spectrum embedding based on the CRT method to produce imperceptibility and safe image steganography method. Based on the test results it is proven that the combination of the proposed methods can increase imperceptibility of CRT-based steganography based on SSIM metric.

2020-09-04
Nursetyo, Arif, Ignatius Moses Setiadi, De Rosal, Rachmawanto, Eko Hari, Sari, Christy Atika.  2019.  Website and Network Security Techniques against Brute Force Attacks using Honeypot. 2019 Fourth International Conference on Informatics and Computing (ICIC). :1—6.
The development of the internet and the web makes human activities more practical, comfortable, and inexpensive. So that the use of the internet and websites is increasing in various ways. Public networks make the security of websites vulnerable to attack. This research proposes a Honeypot for server security against attackers who want to steal data by carrying out a brute force attack. In this research, Honeypot is integrated on the server to protect the server by creating a shadow server. This server is responsible for tricking the attacker into not being able to enter the original server. Brute force attacks tested using Medusa tools. With the application of Honeypot on the server, it is proven that the server can be secured from the attacker. Even the log of activities carried out by the attacker in the shadow server is stored in the Kippo log activities.