Biblio

Filters: Author is Zhang, Chen  [Clear All Filters]
2023-05-12
Zhang, Chen, Wu, Zhouyang, Li, Xianghua, Liang, Jian, Jiang, Zhongyao, Luo, Ceheng, Wen, Fangjun, Wang, Guangda, Dai, Wei.  2022.  Resilience Assessment Method of Integrated Electricity and Gas System Based on Hetero-functional Graph Theory. 2022 2nd International Conference on Electrical Engineering and Control Science (IC2ECS). :34–39.
The resilience assessment of electric and gas networks gains importance due to increasing interdependencies caused by the coupling of gas-fired units. However, the gradually increasing scale of the integrated electricity and gas system (IEGS) poses a significant challenge to current assessment methods. The numerical analysis method is accurate but time-consuming, which may incur a significant computational cost in large-scale IEGS. Therefore, this paper proposes a resilience assessment method based on hetero-functional graph theory for IEGS to balance the accuracy with the computational complexity. In contrast to traditional graph theory, HFGT can effectively depict the coupled systems with inherent heterogeneity and can represent the structure of heterogeneous functional systems in a clear and unambiguous way. In addition, due to the advantages of modelling the system functionality, the effect of line-pack in the gas network on the system resilience is depicted more precisely in this paper. Simulation results on an IEGS with the IEEE 9-bus system and a 7-node gas system verify the effectiveness of the proposed method.
2020-07-03
Suo, Yucong, Zhang, Chen, Xi, Xiaoyun, Wang, Xinyi, Zou, Zhiqiang.  2019.  Video Data Hierarchical Retrieval via Deep Hash Method. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). :709—714.

Video retrieval technology faces a series of challenges with the tremendous growth in the number of videos. In order to improve the retrieval performance in efficiency and accuracy, a novel deep hash method for video data hierarchical retrieval is proposed in this paper. The approach first uses cluster-based method to extract key frames, which reduces the workload of subsequent work. On the basis of this, high-level semantical features are extracted from VGG16, a widely used deep convolutional neural network (deep CNN) model. Then we utilize a hierarchical retrieval strategy to improve the retrieval performance, roughly can be categorized as coarse search and fine search. In coarse search, we modify simHash to learn hash codes for faster speed, and in fine search, we use the Euclidean distance to achieve higher accuracy. Finally, we compare our approach with other two methods through practical experiments on two videos, and the results demonstrate that our approach has better retrieval effect.