Biblio
Secure multi-party computation(SMPC) is an important research field in cryptography, secure multi-party computation has a wide range of applications in practice. Accordingly, information security issues have arisen. Aiming at security issues in Secure multi-party computation, we consider that semi-honest participants have malicious operations such as collusion in the process of information interaction, gaining an information advantage over honest parties through collusion which leads to deviations in the security of the protocol. To solve this problem, we combine information entropy to propose an n-round information exchange protocol, in which each participant broadcasts a relevant information value in each round without revealing additional information. Through the change of the uncertainty of the correct result value in each round of interactive information, each participant cannot determine the correct result value before the end of the protocol. Security analysis shows that our protocol guarantees the security of the output obtained by the participants after the completion of the protocol.
Cloud-assisted Internet of Vehicles (IoV)which merges the advantages of both cloud computing and Internet of Things that can provide numerous online services, and bring lots of benefits and conveniences to the connected vehicles. However, the security and privacy issues such as confidentiality, access control and driver privacy may prevent it from being widely utilized for message dissemination. Existing attribute-based message encryption schemes still bring high computational cost to the lightweight vehicles. In this paper, we introduce a secure and privacy-preserving dissemination scheme for warning message in cloud-assisted IoV. Firstly, we adopt attribute-based encryption to protect the disseminated warning message, and present a verifiable encryption and decryption outsourcing construction to reduce the computational overhead on vehicles. Secondly, we present a conditional privacy preservation mechanism which utilizes anonymous identity-based signature technique to ensure anonymous vehicle authentication and message integrity checking, and also allows the trusted authority to trace the real identity of malicious vehicle. We further achieve batch verification to improve the authentication efficiency. The analysis indicate that our scheme gains more security properties and reduces the computational overhead on the vehicles.