Biblio

Filters: Author is Li, Peng  [Clear All Filters]
2022-04-19
Hong, Zicong, Guo, Song, Li, Peng, Chen, Wuhui.  2021.  Pyramid: A Layered Sharding Blockchain System. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. :1–10.
Sharding can significantly improve the blockchain scalability, by dividing nodes into small groups called shards that can handle transactions in parallel. However, all existing sharding systems adopt complete sharding, i.e., shards are isolated. It raises additional overhead to guarantee the atomicity and consistency of cross-shard transactions and seriously degrades the sharding performance. In this paper, we present Pyramid, the first layered sharding blockchain system, in which some shards can store the full records of multiple shards thus the cross-shard transactions can be processed and validated in these shards internally. When committing cross-shard transactions, to achieve consistency among the related shards, a layered sharding consensus based on the collaboration among several shards is presented. Compared with complete sharding in which each cross-shard transaction is split into multiple sub-transactions and cost multiple consensus rounds to commit, the layered sharding consensus can commit cross-shard transactions in one round. Furthermore, the security, scalability, and performance of layered sharding with different sharding structures are theoretically analyzed. Finally, we implement a prototype for Pyramid and its evaluation results illustrate that compared with the state-of-the-art complete sharding systems, Pyramid can improve the transaction throughput by 2.95 times in a system with 17 shards and 3500 nodes.
2020-08-24
Yuan, Xu, Zhang, Jianing, Chen, Zhikui, Gao, Jing, Li, Peng.  2019.  Privacy-Preserving Deep Learning Models for Law Big Data Feature Learning. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :128–134.
Nowadays, a massive number of data, referred as big data, are being collected from social networks and Internet of Things (IoT), which are of tremendous value. Many deep learning-based methods made great progress in the extraction of knowledge of those data. However, the knowledge extraction of the law data poses vast challenges on the deep learning, since the law data usually contain the privacy information. In addition, the amount of law data of an institution is not large enough to well train a deep model. To solve these challenges, some privacy-preserving deep learning are proposed to capture knowledge of privacy data. In this paper, we review the emerging topics of deep learning for the feature learning of the privacy data. Then, we discuss the problems and the future trend in deep learning for privacy-preserving feature learning on law data.
2020-08-28
Li, Peng, Min, Xiao-Cui.  2019.  Accurate Marking Method of Network Attacking Information Based on Big Data Analysis. 2019 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :228—231.

In the open network environment, the network offensive information is implanted in big data environment, so it is necessary to carry out accurate location marking of network offensive information, to realize network attack detection, and to implement the process of accurate location marking of network offensive information. Combined with big data analysis method, the location of network attack nodes is realized, but when network attacks cross in series, the performance of attack information tagging is not good. An accurate marking technique for network attack information is proposed based on big data fusion tracking recognition. The adaptive learning model combined with big data is used to mark and sample the network attack information, and the feature analysis model of attack information chain is designed by extracting the association rules. This paper classifies the data types of the network attack nodes, and improves the network attack detection ability by the task scheduling method of the network attack information nodes, and realizes the accurate marking of the network attacking information. Simulation results show that the proposed algorithm can effectively improve the accuracy of marking offensive information in open network environment, the efficiency of attack detection and the ability of intrusion prevention is improved, and it has good application value in the field of network security defense.