Biblio
Filters: Author is Yau, Yiu Chung [Clear All Filters]
Secure Pattern-Based Data Sensitivity Framework for Big Data in Healthcare. 2019 IEEE International Conference on Big Data, Cloud Computing, Data Science Engineering (BCD). :65—70.
.
2019. With the exponential growth in the usage of electronic medical records (EMR), the amount of data generated by the healthcare industry has too increased exponentially. These large amounts of data, known as “Big Data” is mostly unstructured. Special big data analytics methods are required to process the information and retrieve information which is meaningful. As patient information in hospitals and other healthcare facilities become increasingly electronic, Big Data technologies are needed now more than ever to manage and understand this data. In addition, this information tends to be quite sensitive and needs a highly secure environment. However, current security algorithms are hard to be implemented because it would take a huge amount of time and resources. Security protocols in Big data are also not adequate in protecting sensitive information in the healthcare. As a result, the healthcare data is both heterogeneous and insecure. As a solution we propose the Secure Pattern-Based Data Sensitivity Framework (PBDSF), that uses machine learning mechanisms to identify the common set of attributes of patient data, data frequency, various patterns of codes used to identify specific conditions to secure sensitive information. The framework uses Hadoop and is built on Hadoop Distributed File System (HDFS) as a basis for our clusters of machines to process Big Data, and perform tasks such as identifying sensitive information in a huge amount of data and encrypting data that are identified to be sensitive.