Biblio

Filters: Author is Feng, Qi  [Clear All Filters]
2021-05-18
Feng, Qi, Feng, Chendong, Hong, Weijiang.  2020.  Graph Neural Network-based Vulnerability Predication. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). :800–801.
Automatic vulnerability detection is challenging. In this paper, we report our in-progress work of vulnerability prediction based on graph neural network (GNN). We propose a general GNN-based framework for predicting the vulnerabilities in program functions. We study the different instantiations of the framework in representative program graph representations, initial node encodings, and GNN learning methods. The preliminary experimental results on a representative benchmark indicate that the GNN-based method can improve the accuracy and recall rates of vulnerability prediction.
2020-09-14
Feng, Qi, Huang, Jianjun, Yang, Zhaocheng.  2019.  Jointly Optimized Target Detection and Tracking Using Compressive Samples. IEEE Access. 7:73675–73684.
In this paper, we consider the problem of joint target detection and tracking in compressive sampling and processing (CSP-JDT). CSP can process the compressive samples of sparse signals directly without signal reconstruction, which is suitable for handling high-resolution radar signals. However, in CSP, the radar target detection and tracking problems are usually solved separately or by a two-stage strategy, which cannot obtain a globally optimal solution. To jointly optimize the target detection and tracking performance and inspired by the optimal Bayes joint decision and estimation (JDE) framework, a jointly optimized target detection and tracking algorithm in CSP is proposed. Since detection and tracking are highly correlated, we first develop a measurement matrix construction method to acquire the compressive samples, and then a joint CSP Bayesian approach is developed for target detection and tracking. The experimental results demonstrate that the proposed method outperforms the two-stage algorithms in terms of the joint performance metric.