Biblio
Filters: Author is Venugopalan, Sarad [Clear All Filters]
Protecting the Integrity of IoT Sensor Data and Firmware With A Feather-Light Blockchain Infrastructure. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–9.
.
2022. Smart cities deploy large numbers of sensors and collect a tremendous amount of data from them. For example, Advanced Metering Infrastructures (AMIs), which consist of physical meters that collect usage data about public utilities such as power and water, are an important building block in a smart city. In a typical sensor network, the measurement devices are connected through a computer network, which exposes them to cyber attacks. Furthermore, the data is centrally managed at the operator’s servers, making it vulnerable to insider threats.Our goal is to protect the integrity of data collected by large-scale sensor networks and the firmware in measurement devices from cyber attacks and insider threats. To this end, we first develop a comprehensive threat model for attacks against data and firmware integrity, which can target any of the stakeholders in the operation of the sensor network. Next, we use our threat model to analyze existing defense mechanisms, including signature checks, remote firmware attestation, anomaly detection, and blockchain-based secure logs. However, the large size of the Trusted Computing Base and a lack of scalability limit the applicability of these existing mechanisms. We propose the Feather-Light Blockchain Infrastructure (FLBI) framework to address these limitations. Our framework leverages a two-layer architecture and cryptographic threshold signature chains to support large networks of low-capacity devices such as meters and data aggregators. We have fully implemented the FLBI’s end-to-end functionality on the Hyperledger Fabric and private Ethereum blockchain platforms. Our experiments show that the FLBI is able to support millions of end devices.
A Security Reference Architecture for Blockchains. 2019 IEEE International Conference on Blockchain (Blockchain). :390–397.
.
2019. Due to their specific features, blockchains have become popular in recent years. Blockchains are layered systems where security is a critical factor for their success. The main focus of this work is to systematize knowledge about security and privacy issues of blockchains. To this end, we propose a security reference architecture based on models that demonstrate the stacked hierarchy of various threats as well as threat-risk assessment using ISO/IEC 15408. In contrast to the previous surveys [23], [88], [11], we focus on the categorization of security vulnerabilities based on their origins and using the proposed architecture we present existing prevention and mitigation techniques. The scope of our work mainly covers aspects related to the nature of blockchains, while we mention operational security issues and countermeasures only tangentially.