Biblio

Filters: Author is Xiang, Yong  [Clear All Filters]
2022-06-07
Gayathri, R G, Sajjanhar, Atul, Xiang, Yong, Ma, Xingjun.  2021.  Anomaly Detection for Scenario-based Insider Activities using CGAN Augmented Data. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :718–725.
Insider threats are the cyber attacks from the trusted entities within an organization. An insider attack is hard to detect as it may not leave a footprint and potentially cause huge damage to organizations. Anomaly detection is the most common approach for insider threat detection. Lack of real-world data and the skewed class distribution in the datasets makes insider threat analysis an understudied research area. In this paper, we propose a Conditional Generative Adversarial Network (CGAN) to enrich under-represented minority class samples to provide meaningful and diverse data for anomaly detection from the original malicious scenarios. Comprehensive experiments performed on benchmark dataset demonstrates the effectiveness of using CGAN augmented data, and the capability of multi-class anomaly detection for insider activity analysis. Moreover, the method is compared with other existing methods against different parameters and performance metrics.
2021-06-28
Li, Meng, Zhong, Qi, Zhang, Leo Yu, Du, Yajuan, Zhang, Jun, Xiang, Yong.  2020.  Protecting the Intellectual Property of Deep Neural Networks with Watermarking: The Frequency Domain Approach. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :402–409.
Similar to other digital assets, deep neural network (DNN) models could suffer from piracy threat initiated by insider and/or outsider adversaries due to their inherent commercial value. DNN watermarking is a promising technique to mitigate this threat to intellectual property. This work focuses on black-box DNN watermarking, with which an owner can only verify his ownership by issuing special trigger queries to a remote suspicious model. However, informed attackers, who are aware of the watermark and somehow obtain the triggers, could forge fake triggers to claim their ownerships since the poor robustness of triggers and the lack of correlation between the model and the owner identity. This consideration calls for new watermarking methods that can achieve better trade-off for addressing the discrepancy. In this paper, we exploit frequency domain image watermarking to generate triggers and build our DNN watermarking algorithm accordingly. Since watermarking in the frequency domain is high concealment and robust to signal processing operation, the proposed algorithm is superior to existing schemes in resisting fraudulent claim attack. Besides, extensive experimental results on 3 datasets and 8 neural networks demonstrate that the proposed DNN watermarking algorithm achieves similar performance on functionality metrics and better performance on security metrics when compared with existing algorithms.
2020-09-28
Gu, Bruce, Wang, Xiaodong, Qu, Youyang, Jin, Jiong, Xiang, Yong, Gao, Longxiang.  2019.  Context-Aware Privacy Preservation in a Hierarchical Fog Computing System. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Fog computing faces various security and privacy threats. Internet of Things (IoTs) devices have limited computing, storage, and other resources. They are vulnerable to attack by adversaries. Although the existing privacy-preserving solutions in fog computing can be migrated to address some privacy issues, specific privacy challenges still exist because of the unique features of fog computing, such as the decentralized and hierarchical infrastructure, mobility, location and content-aware applications. Unfortunately, privacy-preserving issues and resources in fog computing have not been systematically identified, especially the privacy preservation in multiple fog node communication with end users. In this paper, we propose a dynamic MDP-based privacy-preserving model in zero-sum game to identify the efficiency of the privacy loss and payoff changes to preserve sensitive content in a fog computing environment. First, we develop a new dynamic model with MDP-based comprehensive algorithms. Then, extensive experimental results identify the significance of the proposed model compared with others in more effectively and feasibly solving the discussed issues.