Biblio
Filters: Author is Tsai, Meng-Hsun [Clear All Filters]
Machine learning-based IP Camera identification system. 2020 International Computer Symposium (ICS). :426—430.
.
2020. With the development of technology, application of the Internet in daily life is increasing, making our connection with the Internet closer. However, with the improvement of convenience, information security has become more and more important. How to ensure information security in a convenient living environment is a question worth discussing. For instance, the widespread deployment of IP-cameras has made great progress in terms of convenience. On the contrary, it increases the risk of privacy exposure. Poorly designed surveillance devices may be implanted with suspicious software, which might be a thorny issue to human life. To effectively identify vulnerable devices, we design an SDN-based identification system that uses machine learning technology to identify brands and probable model types by identifying packet features. The identifying results make it possible for further vulnerability analysis.
Realizing Dynamic Network Slice Resource Management based on SDN networks. 2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA). :120–125.
.
2019. It is expected that the concept of Internet of everything will be realized in 2020 because of the coming of the 5G wireless communication technology. Internet of Things (IoT) services in various fields require different types of network service features, such as mobility, security, bandwidth, latency, reliability and control strategies. In order to solve the complex requirements and provide customized services, a new network architecture is needed. To change the traditional control mode used in the traditional network architecture, the Software Defined Network (SDN) is proposed. First, SDN divides the network into the Control Plane and Data Plane and then delegates the network management authority to the controller of the control layer. This allows centralized control of connections of a large number of devices. Second, SDN can help realizing the network slicing in the aspect of network layer. With the network slicing technology proposed by 5G, it can cut the 5G network out of multiple virtual networks and each virtual network is to support the needs of diverse users. In this work, we design and develop a network slicing framework. The contributions of this article are two folds. First, through SDN technology, we develop to provide the corresponding end-to-end (E2E) network slicing for IoT applications with different requirements. Second, we develop a dynamic network slice resource scheduling and management method based on SDN to meet the services' requirements with time-varying characteristics. This is usually observed in streaming and services with bursty traffic. A prototyping system is completed. The effectiveness of the system is demonstrated by using an electronic fence application as a use case.